GLIDE: Multi-Agent Deep Reinforcement Learning for Coordinated UAV Control in Dynamic Military Environments

被引:1
|
作者
Gadiraju, Divija Swetha [1 ]
Karmakar, Prasenjit [2 ]
Shah, Vijay K. [3 ]
Aggarwal, Vaneet [4 ]
机构
[1] Univ Nebraska, Sch Interdisciplinary Informat, Lincoln, NE 68588 USA
[2] IIT Kharagpur, Dept Comp Sci & Engn, Kharagpur 721302, India
[3] George Mason Univ, Dept Psychol, Fairfax, VA 22030 USA
[4] Purdue Univ, Sch Ind Engn, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
UAV swarm; military application; multi-agent reinforcement learning; LEVEL;
D O I
10.3390/info15080477
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicles (UAVs) are widely used for missions in dynamic environments. Deep Reinforcement Learning (DRL) can find effective strategies for multiple agents that need to cooperate to complete the task. In this article, the challenge of controlling the movement of a fleet of UAVs is addressed by Multi-Agent Deep Reinforcement Learning (MARL). The collaborative movement of the UAV fleet can be controlled centrally and also in a decentralized fashion, which is studied in this work. We consider a dynamic military environment with a fleet of UAVs, whose task is to destroy enemy targets while avoiding obstacles like mines. The UAVs inherently come with a limited battery capacity directing our research to focus on the minimum task completion time. We propose a continuous-time-based Proximal Policy Optimization (PPO) algorithm for multi-aGent Learning In Dynamic Environments (GLIDE). In GLIDE, the UAVs coordinate among themselves and communicate with the central base to choose the best possible action. The action control in GLIDE can be controlled in a centralized and decentralized way, and two algorithms called Centralized-GLIDE (C-GLIDE), and Decentralized-GLIDE (D-GLIDE) are proposed on this basis. We developed a simulator called UAV SIM, in which the mines are placed at randomly generated 2D locations unknown to the UAVs at the beginning of each episode. The performance of both the proposed schemes is evaluated through extensive simulations. Both C-GLIDE and D-GLIDE converge and have comparable performance in target destruction rate for the same number of targets and mines. We observe that D-GLIDE is up to 68% faster in task completion time compared to C-GLIDE and could keep more UAVs alive at the end of the task.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [32] Dynamic holding control to avoid bus bunching: A multi-agent deep reinforcement learning framework
    Wang, Jiawei
    Sun, Lijun
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 116 (116)
  • [33] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [34] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [35] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [36] Securing UAV Communication Based on Multi-Agent Deep Reinforcement Learning in the Presence of Smart UAV Eavesdropper
    Wen, Chaoyang
    Fang, Yuan
    Qiu, Ling
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1164 - 1169
  • [37] A Multi-Agent Deep Reinforcement Learning Approach for Practical Decentralized UAV Collision Avoidance
    Thumiger, Nicholas
    Deghat, Mohammad
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2174 - 2179
  • [38] UAV-Enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning
    Liu, Saichao
    Sun, Geng
    Li, Jiahui
    Liang, Shuang
    Wu, Qingqing
    Wang, Pengfei
    Niyato, Dusit
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 13015 - 13032
  • [39] Multi-Agent Deep Reinforcement Learning Based UAV Trajectory Optimization for Differentiated Services
    Ning, Zhaolong
    Yang, Yuxuan
    Wang, Xiaojie
    Song, Qingyang
    Guo, Lei
    Jamalipour, Abbas
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5818 - 5834
  • [40] Multi-agent Computation Offloading in UAV Assisted MEC via Deep Reinforcement Learning
    He, Hang
    Ren, Tao
    Qiu, Yuan
    Hu, Zheyuan
    Li, Yanqi
    SMART COMPUTING AND COMMUNICATION, 2022, 13202 : 416 - 426