GLIDE: Multi-Agent Deep Reinforcement Learning for Coordinated UAV Control in Dynamic Military Environments

被引:1
|
作者
Gadiraju, Divija Swetha [1 ]
Karmakar, Prasenjit [2 ]
Shah, Vijay K. [3 ]
Aggarwal, Vaneet [4 ]
机构
[1] Univ Nebraska, Sch Interdisciplinary Informat, Lincoln, NE 68588 USA
[2] IIT Kharagpur, Dept Comp Sci & Engn, Kharagpur 721302, India
[3] George Mason Univ, Dept Psychol, Fairfax, VA 22030 USA
[4] Purdue Univ, Sch Ind Engn, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
UAV swarm; military application; multi-agent reinforcement learning; LEVEL;
D O I
10.3390/info15080477
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicles (UAVs) are widely used for missions in dynamic environments. Deep Reinforcement Learning (DRL) can find effective strategies for multiple agents that need to cooperate to complete the task. In this article, the challenge of controlling the movement of a fleet of UAVs is addressed by Multi-Agent Deep Reinforcement Learning (MARL). The collaborative movement of the UAV fleet can be controlled centrally and also in a decentralized fashion, which is studied in this work. We consider a dynamic military environment with a fleet of UAVs, whose task is to destroy enemy targets while avoiding obstacles like mines. The UAVs inherently come with a limited battery capacity directing our research to focus on the minimum task completion time. We propose a continuous-time-based Proximal Policy Optimization (PPO) algorithm for multi-aGent Learning In Dynamic Environments (GLIDE). In GLIDE, the UAVs coordinate among themselves and communicate with the central base to choose the best possible action. The action control in GLIDE can be controlled in a centralized and decentralized way, and two algorithms called Centralized-GLIDE (C-GLIDE), and Decentralized-GLIDE (D-GLIDE) are proposed on this basis. We developed a simulator called UAV SIM, in which the mines are placed at randomly generated 2D locations unknown to the UAVs at the beginning of each episode. The performance of both the proposed schemes is evaluated through extensive simulations. Both C-GLIDE and D-GLIDE converge and have comparable performance in target destruction rate for the same number of targets and mines. We observe that D-GLIDE is up to 68% faster in task completion time compared to C-GLIDE and could keep more UAVs alive at the end of the task.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] The Coordinated Charging Pricing Approach for Charging Stations with Multi-agent Deep Reinforcement Learning
    Wang, Fangyu
    Chen, Qian
    Yang, Liping
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 1987 - 1992
  • [42] Coordinated Multi-Agent Deep Reinforcement Learning for Energy-Aware UAV-Based Big-Data Platforms
    Jung, Soyi
    Yun, Won Joon
    Kim, Joongheon
    Kim, Jae-Hyun
    ELECTRONICS, 2021, 10 (05) : 1 - 15
  • [43] PowerNet: Multi-Agent Deep Reinforcement Learning for Scalable Powergrid Control
    Chen, Dong
    Chen, Kaian
    Li, Zhaojian
    Chu, Tianshu
    Yao, Rui
    Qiu, Feng
    Lin, Kaixiang
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (02) : 1007 - 1017
  • [44] Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings
    Yu, Liang
    Sun, Yi
    Xu, Zhanbo
    Shen, Chao
    Yue, Dong
    Jiang, Tao
    Guan, Xiaohong
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (01) : 407 - 419
  • [45] Deep Reinforcement Learning for Multi-Agent Power Control in Heterogeneous Networks
    Zhang, Lin
    Liang, Ying-Chang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (04) : 2551 - 2564
  • [46] Decentralized Multi-agent Formation Control via Deep Reinforcement Learning
    Gutpa, Aniket
    Nallanthighal, Raghava
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2021, : 289 - 295
  • [47] Multi-agent behavioral control system using deep reinforcement learning
    Ngoc Duy Nguyen
    Thanh Nguyen
    Nahavandi, Saeid
    NEUROCOMPUTING, 2019, 359 : 58 - 68
  • [48] Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
    Rozada, Sergio
    Apostolopoulou, Dimitra
    Alonso, Eduardo
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [49] MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning
    Malysheva, Aleksandra
    Kudenko, Daniel
    Shpilman, Aleksei
    2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 171 - 176
  • [50] Robust multi-agent reinforcement learning for noisy environments
    Chen, Xinning
    Liu, Xuan
    Luo, Canhui
    Yin, Jiangjin
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2022, 15 (02) : 1045 - 1056