GLIDE: Multi-Agent Deep Reinforcement Learning for Coordinated UAV Control in Dynamic Military Environments

被引:1
|
作者
Gadiraju, Divija Swetha [1 ]
Karmakar, Prasenjit [2 ]
Shah, Vijay K. [3 ]
Aggarwal, Vaneet [4 ]
机构
[1] Univ Nebraska, Sch Interdisciplinary Informat, Lincoln, NE 68588 USA
[2] IIT Kharagpur, Dept Comp Sci & Engn, Kharagpur 721302, India
[3] George Mason Univ, Dept Psychol, Fairfax, VA 22030 USA
[4] Purdue Univ, Sch Ind Engn, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
UAV swarm; military application; multi-agent reinforcement learning; LEVEL;
D O I
10.3390/info15080477
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicles (UAVs) are widely used for missions in dynamic environments. Deep Reinforcement Learning (DRL) can find effective strategies for multiple agents that need to cooperate to complete the task. In this article, the challenge of controlling the movement of a fleet of UAVs is addressed by Multi-Agent Deep Reinforcement Learning (MARL). The collaborative movement of the UAV fleet can be controlled centrally and also in a decentralized fashion, which is studied in this work. We consider a dynamic military environment with a fleet of UAVs, whose task is to destroy enemy targets while avoiding obstacles like mines. The UAVs inherently come with a limited battery capacity directing our research to focus on the minimum task completion time. We propose a continuous-time-based Proximal Policy Optimization (PPO) algorithm for multi-aGent Learning In Dynamic Environments (GLIDE). In GLIDE, the UAVs coordinate among themselves and communicate with the central base to choose the best possible action. The action control in GLIDE can be controlled in a centralized and decentralized way, and two algorithms called Centralized-GLIDE (C-GLIDE), and Decentralized-GLIDE (D-GLIDE) are proposed on this basis. We developed a simulator called UAV SIM, in which the mines are placed at randomly generated 2D locations unknown to the UAVs at the beginning of each episode. The performance of both the proposed schemes is evaluated through extensive simulations. Both C-GLIDE and D-GLIDE converge and have comparable performance in target destruction rate for the same number of targets and mines. We observe that D-GLIDE is up to 68% faster in task completion time compared to C-GLIDE and could keep more UAVs alive at the end of the task.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Multi-Agent Reinforcement Learning for Job Shop Scheduling in Dynamic Environments
    Pu, Yu
    Li, Fang
    Rahimifard, Shahin
    SUSTAINABILITY, 2024, 16 (08)
  • [22] UAV-Enabled Secure Communications by Multi-Agent Deep Reinforcement Learning
    Zhang, Yu
    Mou, Zhiyu
    Gao, Feifei
    Jiang, Jing
    Ding, Ruijin
    Han, Zhu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 11599 - 11611
  • [23] Formation Control of Multi-agent Based on Deep Reinforcement Learning
    Pan, Chao
    Nian, Xiaohong
    Dai, Xunhua
    Wang, Haibo
    Xiong, Hongyun
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1149 - 1159
  • [24] AUTOTELIC REINFORCEMENT LEARNING IN MULTI-AGENT ENVIRONMENTS
    Nisioti, Eleni
    Masquil, Elias
    Hamon, Gautier
    Moulin-Frier, Clement
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 137 - 161
  • [25] The Application of Multi-Agent Reinforcement Learning in UAV Networks
    Cui, Jingjing
    Liu, Yuanwei
    Nallanathan, Arumugam
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2019,
  • [26] Multi-agent Deep Reinforcement Learning for Task Allocation in Dynamic Environment
    Ben Noureddine, Dhouha
    Gharbi, Atef
    Ben Ahmed, Samir
    ICSOFT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2017, : 17 - 26
  • [27] Multi-Agent Deep Reinforcement Learning for Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 2232 - 2237
  • [28] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [29] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [30] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943