Compressive sensing-moving horizon estimator for combined state/input estimation: an observability study

被引:0
|
作者
Kirchner, M. [1 ,2 ]
Croes, J. [1 ,2 ]
Cosco, F. [1 ,2 ]
Pluymers, B. [1 ,2 ]
Desmet, W. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300, B-3001 Leuven, Belgium
[2] Flanders Make, Lommel, Belgium
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The compressive sensing-moving horizon estimator (CS-MHE) is a recently proposed approach for combined state/input estimation. It exploits the intrinsic capability of a moving horizon estimator of minimizing the noise while correlating a model with measurements, together with compressive sensing principles that allow the observation of a large number of input locations for a small set of measurements. The CS-MHE has been shown able to estimate the states and an unknown force impulse on a linear time-invariant mechanical system, in terms of input magnitude, time and position, provided that the input is sparse. This paper summarizes the CS-MHE approach and discusses observability, focusing on the differences between the CS-MHE, a MHE with no assumptions on the input and a MHE in which inputs are described by a random walk model. This comparison illustrates the benefit of exploiting known information about the input behavior and allows to define an observability threshold on input sparsity for the CS-MHE.
引用
收藏
页码:2947 / 2961
页数:15
相关论文
共 50 条
  • [1] Compressive sensing-moving horizon estimator for distributed loads
    Kirchner, M.
    Croes, J.
    Cosco, F.
    Desmet, W.
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 447 - 452
  • [2] Compressive sensing-moving horizon estimator for periodic loads: experimental validation in structural dynamics with video-based measurements
    Kirchner, M.
    Croes, J.
    Cosco, F.
    Pluymers, B.
    Desmet, W.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2018) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2018), 2018, : 1487 - 1501
  • [3] Humanoid state estimation using a moving horizon estimator
    Bae, Hyoin
    Oh, Jun-Ho
    ADVANCED ROBOTICS, 2017, 31 (13) : 695 - 705
  • [4] Humanoid state estimation using a moving horizon estimator
    Bae, Hyoin
    Oh, Jun-Ho
    Advanced Robotics, 2017, 31 (13): : 695 - 705
  • [5] A regularized Moving Horizon Estimator for combined state and parameter estimation in a bioprocess experimental application
    Tuveri, Andrea
    Nakama, Caroline S. M.
    Matias, Jose
    Holck, Haakon Eng
    Jaeschke, Johannes
    Imsland, Lars
    Bar, Nadav
    COMPUTERS & CHEMICAL ENGINEERING, 2023, 172
  • [6] Exploiting input sparsity for joint state/input moving horizon estimation
    Kirchner, M.
    Croes, J.
    Cosco, F.
    Desmet, W.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 101 : 237 - 253
  • [7] A New State Estimation Framework for Humanoids based on a Moving Horizon Estimator
    Bae, Hyoin
    Oh, Jaesung
    Jeong, Hyobin
    Oh, Jun-Ho
    IFAC PAPERSONLINE, 2017, 50 (01): : 3793 - 3799
  • [8] Estimation of state variables in semiautogenous mills by means of a neural moving horizon state estimator
    Carvajal, Karina
    Acuna, Gonzalo
    ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 1, PROCEEDINGS, 2007, 4491 : 1255 - +
  • [9] Improved state estimation using a combination of moving horizon estimator and particle filters
    Rajamani, Murali R.
    Rawlings, James B.
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 5585 - 5586
  • [10] On Observability and Stability of Moving-Horizon Estimation in a Distributional Framework
    Krishnan, Vishaal
    Martinez, Sonia
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 459 - 464