Compressive sensing-moving horizon estimator for combined state/input estimation: an observability study

被引:0
|
作者
Kirchner, M. [1 ,2 ]
Croes, J. [1 ,2 ]
Cosco, F. [1 ,2 ]
Pluymers, B. [1 ,2 ]
Desmet, W. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300, B-3001 Leuven, Belgium
[2] Flanders Make, Lommel, Belgium
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The compressive sensing-moving horizon estimator (CS-MHE) is a recently proposed approach for combined state/input estimation. It exploits the intrinsic capability of a moving horizon estimator of minimizing the noise while correlating a model with measurements, together with compressive sensing principles that allow the observation of a large number of input locations for a small set of measurements. The CS-MHE has been shown able to estimate the states and an unknown force impulse on a linear time-invariant mechanical system, in terms of input magnitude, time and position, provided that the input is sparse. This paper summarizes the CS-MHE approach and discusses observability, focusing on the differences between the CS-MHE, a MHE with no assumptions on the input and a MHE in which inputs are described by a random walk model. This comparison illustrates the benefit of exploiting known information about the input behavior and allows to define an observability threshold on input sparsity for the CS-MHE.
引用
收藏
页码:2947 / 2961
页数:15
相关论文
共 50 条
  • [41] State and parameter estimation in a hydraulic system - moving horizon approach
    Baranowski, Jerzy
    Tutaj, Andrzej
    2008 13TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-5, 2008, : 1432 - 1439
  • [42] Moving Horizon State Estimation for a bioprocesses modelled by a neural network
    Flaus, JM
    Boillereaux, L
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 1997, 19 (05) : 263 - 270
  • [43] Efficient moving horizon state and parameter estimation for SMB processes
    Kuepper, Achim
    Diehl, Moritz
    Schloeder, Johannes P.
    Bock, Hans Georg
    Engell, Sebastian
    JOURNAL OF PROCESS CONTROL, 2009, 19 (05) : 785 - 802
  • [44] Moving horizon state estimation for nonlinear systems with bounded uncertainties
    Liu, Jinfeng
    CHEMICAL ENGINEERING SCIENCE, 2013, 93 : 376 - 386
  • [45] A parametric programming approach to moving-horizon state estimation
    Darby, Mark L.
    Nikolaou, Michael
    AUTOMATICA, 2007, 43 (05) : 885 - 891
  • [46] Nonlinear moving horizon state estimation of an activated sludge model
    Arnold, E
    Dietze, S
    LARGE SCALE SYSTEMS: THEORY AND APPLICATIONS 2001 (LSS'01), 2001, : 545 - 550
  • [47] AN EVALUATION OF THE MOVING HORIZON ESTIMATION ALGORITHM FOR ONLINE ESTIMATION OF BATTERY STATE OF CHARGE AND STATE OF HEALTH
    Pattel, Bibin
    Borhan, Hoseinali
    Anwar, Sohel
    ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 4B, 2015,
  • [48] Distribution system state estimation using compressive sensing
    Majidi, M.
    Etezadi-Amoli, M.
    Livani, H.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2017, 88 : 175 - 186
  • [49] Hybrid State Estimation using Distributed Compressive Sensing
    Hamidi, Reza J.
    Khodabandelou, H.
    Livani, H.
    Sami-Fadali, M.
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [50] A combined MAP and Bayesian scheme for finite data and/or moving horizon estimation
    Delgado, Ramon A.
    Goodwin, Graham C.
    AUTOMATICA, 2014, 50 (04) : 1116 - 1121