Compressive sensing-moving horizon estimator for combined state/input estimation: an observability study

被引:0
|
作者
Kirchner, M. [1 ,2 ]
Croes, J. [1 ,2 ]
Cosco, F. [1 ,2 ]
Pluymers, B. [1 ,2 ]
Desmet, W. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300, B-3001 Leuven, Belgium
[2] Flanders Make, Lommel, Belgium
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The compressive sensing-moving horizon estimator (CS-MHE) is a recently proposed approach for combined state/input estimation. It exploits the intrinsic capability of a moving horizon estimator of minimizing the noise while correlating a model with measurements, together with compressive sensing principles that allow the observation of a large number of input locations for a small set of measurements. The CS-MHE has been shown able to estimate the states and an unknown force impulse on a linear time-invariant mechanical system, in terms of input magnitude, time and position, provided that the input is sparse. This paper summarizes the CS-MHE approach and discusses observability, focusing on the differences between the CS-MHE, a MHE with no assumptions on the input and a MHE in which inputs are described by a random walk model. This comparison illustrates the benefit of exploiting known information about the input behavior and allows to define an observability threshold on input sparsity for the CS-MHE.
引用
收藏
页码:2947 / 2961
页数:15
相关论文
共 50 条
  • [21] A Modified Moving Horizon Estimator for In Situ Sensing of a Chemical Vapor Deposition Process
    Xiong, Rentian
    Grover, Martha Anne
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2009, 17 (05) : 1228 - 1235
  • [22] Nonlinear Moving Horizon Estimator for Online Estimation of the Density and Viscosity of a Mineral Slurry
    Diaz C., Jenny L.
    Ocampo-Martinez, Carlos
    Alvarez, Hernan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (49) : 14592 - 14603
  • [23] Remarks on moving horizon state estimation with guaranteed convergence
    Raff, T
    Ebenbauer, C
    Findeisen, R
    Allgöwer, F
    CONTROL AND OBSERVER DESIGN FOR NONLINEAR FINITE AND INFINITE DIMENSIONAL SYSTEMS, 2005, 322 : 67 - 80
  • [24] Robust Moving Horizon State Estimation for Nonlinear Systems
    Liu, Jinfeng
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 253 - 258
  • [25] Robust Moving Horizon State Estimation: Application to Bioprocesses
    Tebbani, Sihem
    Le Brusquet, Laurent
    Petre, Emil
    Selisteanu, Dan
    2013 17TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2013, : 539 - 544
  • [26] Moving Horizon Estimator with Pre-Estimation for Crop Start Date Estimation in Tropical Area
    Suwantong, Rata
    Srestasathiern, Panu
    Lawawirojwong, Siam
    Rakwatin, Preesan
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 3626 - 3631
  • [27] Moving horizon state estimation for wireless sensor networks
    Luo Ji'an
    Chai Li
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5, 2007, : 571 - +
  • [28] Distributed Moving Horizon State Estimation with Triggered Communication
    Zhang, Jing
    Liu, Jinfeng
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 5700 - 5705
  • [29] MAP moving horizon state estimation with binary measurements
    Battistelli, Giorgio
    Chisci, Luigi
    Forti, Nicola
    Gherardini, Stefano
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5413 - 5418
  • [30] Constrained linear state estimation - a moving horizon approach
    Rao, CV
    Rawlings, JB
    Lee, JH
    AUTOMATICA, 2001, 37 (10) : 1619 - 1628