X-ray Photoelectron Spectroscopy Analysis of Wood Degradation in Old Architecture

被引:14
|
作者
Sun, He [2 ]
Yang, Yan [1 ]
Han, Yanxia [1 ]
Tian, Mingjin [1 ]
Li, Bin [1 ]
Han, Li [3 ]
Wang, Aifeng [1 ]
Wang, Wei [1 ]
Zhao, Rui [1 ]
He, Yiming [1 ]
机构
[1] Nanyang Inst Technol, Sch Architecture, Nanyang City 473000, Henan, Peoples R China
[2] Southwest Forestry Univ, Coll Mat Sci & Engn, Kunming 650224, Yunnan, Peoples R China
[3] Nanyang Inst Technol, Henan Key Lab Zhang Zhongjing Formulae & Herbs Im, Nanyang City 473000, Henan, Peoples R China
来源
BIORESOURCES | 2020年 / 15卷 / 03期
基金
美国国家科学基金会;
关键词
Xichuan Guild Hall; Old architectures; Wooden components; Degradation behavior; Chemical composition changes; XPS; CHEMICAL-COMPOSITION; WHITE-ROT; XPS; FTIR; SURFACES; LIGNIN; DECAY;
D O I
10.15376/biores.15.3.6332-6343
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
To investigate the decay mechanisms of red oak (Quercus rubra) and hemor (Schima spp.) woods in the old architectural structure of Xichuan Guild Hall, chemical composition changes were determined and analyzed with X-ray photoelectron spectroscopy (XPS). The results showed that decaying resulted in a noticeable decrease of the O/C from 0.59 to 0.42 in the red oak wooden components. The increase of C-1 contribution, decrease of C-4 contribution, increase of O-1 and O-3 contributions, and decrease of O-2 contribution indicated that the carbohydrates in red oak wooden components can be easily degraded by fungi compared with lignin. Moreover, decaying resulted in a slight decrease of the O/C from 0.49 to 0.47 in the hemor wooden components. The results of increase of C-1 contribution, decrease of C-3 and C-4 contributions, increase of O-1, and decrease of O-2 and O-3 contributions indicated that carbohydrate and lignin were all degraded by fungi.
引用
收藏
页码:6332 / 6343
页数:12
相关论文
共 50 条
  • [41] APPLIED X-RAY PHOTOELECTRON SPECTROSCOPY
    NOVAKOV, T
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1972, : 31 - &
  • [42] Surface analysis: X-ray photoelectron spectroscopy and auger electron spectroscopy
    Turner, NH
    Schreifels, JA
    ANALYTICAL CHEMISTRY, 2000, 72 (12) : 99R - 110R
  • [43] Determination of surface lignin of wood pulp fibres by X-ray photoelectron spectroscopy
    Li, KC
    Reeve, DW
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2004, 38 (3-4): : 197 - 210
  • [44] X-ray photoelectron spectroscopy analysis of chemically modified halloysite
    Kubala-Kukus, A.
    Szczepanik, B.
    Stabrawa, I.
    Banas, D.
    Szary, K.
    Pajek, M.
    Rogala, P.
    Wojtowicz, K.
    Slomkiewicz, P.
    RADIATION PHYSICS AND CHEMISTRY, 2020, 175
  • [45] Practical guides for x-ray photoelectron spectroscopy: Analysis of polymers
    Easton, Christopher D.
    Kinnear, Calum
    McArthur, Sally L.
    Gengenbach, Thomas R.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (02):
  • [46] AEROSOL ANALYSIS BY MEANS OF X-RAY PHOTOELECTRON-SPECTROSCOPY
    NOVAKOV, T
    CHANG, SG
    DOD, RL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1976, : 44 - 44
  • [47] Quantitative surface analysis by Auger and x-ray photoelectron spectroscopy
    Tilinin, IS
    Jablonski, A
    Werner, WSM
    PROGRESS IN SURFACE SCIENCE, 1996, 52 (04) : 193 - 335
  • [48] Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy
    Ray, Santanu
    Shard, Alexander G.
    ANALYTICAL CHEMISTRY, 2011, 83 (22) : 8659 - 8666
  • [49] Deep layers analysis by hard x-ray photoelectron spectroscopy
    Kobayashi, Keisuke
    Journal of the Vacuum Society of Japan, 2013, 56 (09) : 365 - 376
  • [50] Analysis of electrical insulator surfaces by x-ray photoelectron spectroscopy
    Turner, NH
    Bruning, AM
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 1995, 2 (06) : 1140 - 1146