X-ray Photoelectron Spectroscopy Analysis of Wood Degradation in Old Architecture

被引:14
|
作者
Sun, He [2 ]
Yang, Yan [1 ]
Han, Yanxia [1 ]
Tian, Mingjin [1 ]
Li, Bin [1 ]
Han, Li [3 ]
Wang, Aifeng [1 ]
Wang, Wei [1 ]
Zhao, Rui [1 ]
He, Yiming [1 ]
机构
[1] Nanyang Inst Technol, Sch Architecture, Nanyang City 473000, Henan, Peoples R China
[2] Southwest Forestry Univ, Coll Mat Sci & Engn, Kunming 650224, Yunnan, Peoples R China
[3] Nanyang Inst Technol, Henan Key Lab Zhang Zhongjing Formulae & Herbs Im, Nanyang City 473000, Henan, Peoples R China
来源
BIORESOURCES | 2020年 / 15卷 / 03期
基金
美国国家科学基金会;
关键词
Xichuan Guild Hall; Old architectures; Wooden components; Degradation behavior; Chemical composition changes; XPS; CHEMICAL-COMPOSITION; WHITE-ROT; XPS; FTIR; SURFACES; LIGNIN; DECAY;
D O I
10.15376/biores.15.3.6332-6343
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
To investigate the decay mechanisms of red oak (Quercus rubra) and hemor (Schima spp.) woods in the old architectural structure of Xichuan Guild Hall, chemical composition changes were determined and analyzed with X-ray photoelectron spectroscopy (XPS). The results showed that decaying resulted in a noticeable decrease of the O/C from 0.59 to 0.42 in the red oak wooden components. The increase of C-1 contribution, decrease of C-4 contribution, increase of O-1 and O-3 contributions, and decrease of O-2 contribution indicated that the carbohydrates in red oak wooden components can be easily degraded by fungi compared with lignin. Moreover, decaying resulted in a slight decrease of the O/C from 0.49 to 0.47 in the hemor wooden components. The results of increase of C-1 contribution, decrease of C-3 and C-4 contributions, increase of O-1, and decrease of O-2 and O-3 contributions indicated that carbohydrate and lignin were all degraded by fungi.
引用
收藏
页码:6332 / 6343
页数:12
相关论文
共 50 条
  • [31] Methionine by X-ray Photoelectron Spectroscopy
    Naval Surface Warfare Center, Carderock Division, West Bethesda
    MD
    20817-5700, United States
    Surf. Sci. Spectra, 1 (96-101):
  • [32] X-RAY PHOTOELECTRON-SPECTROSCOPY
    WATTS, JF
    VACUUM, 1994, 45 (6-7) : 653 - 671
  • [33] Introduction to x-ray photoelectron spectroscopy
    Stevie, Fred A.
    Donley, Carrie L.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (06):
  • [34] X-ray photoelectron spectroscopy of conodonts
    Leel, GSH
    Mar, GL
    Rose, HR
    Marshall, CP
    Young, BR
    Skilbeck, CG
    Wilson, MA
    ORGANIC GEOCHEMISTRY, 1998, 28 (11) : 759 - 765
  • [35] X-ray photoelectron spectroscopy of ferroelectrics
    Grigas, Jonas
    Talik, Ewa
    Lazauskas, Valentinas
    FERROELECTRICS, 2007, 347 : 86 - 100
  • [36] X-RAY PHOTOELECTRON-SPECTROSCOPY
    DOMEN, K
    DENKI KAGAKU, 1991, 59 (08): : 673 - 678
  • [37] X-RAY PHOTOELECTRON SPECTROSCOPY OF HALOMETHANES
    THOMAS, TD
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1970, 92 (14) : 4184 - &
  • [38] X-ray photoelectron spectroscopy and archaeology
    Lambert, JB
    McLaughlin, CD
    Shawl, CE
    Xue, L
    ANALYTICAL CHEMISTRY, 1999, 71 (17) : 614A - 620A
  • [40] X-RAY PHOTOELECTRON SPECTROSCOPY OF FLUOROPOLYMERS
    GINNARD, CR
    RIGGS, WM
    ANALYTICAL CHEMISTRY, 1972, 44 (07) : 1310 - +