X-ray Photoelectron Spectroscopy Analysis of Wood Degradation in Old Architecture

被引:14
|
作者
Sun, He [2 ]
Yang, Yan [1 ]
Han, Yanxia [1 ]
Tian, Mingjin [1 ]
Li, Bin [1 ]
Han, Li [3 ]
Wang, Aifeng [1 ]
Wang, Wei [1 ]
Zhao, Rui [1 ]
He, Yiming [1 ]
机构
[1] Nanyang Inst Technol, Sch Architecture, Nanyang City 473000, Henan, Peoples R China
[2] Southwest Forestry Univ, Coll Mat Sci & Engn, Kunming 650224, Yunnan, Peoples R China
[3] Nanyang Inst Technol, Henan Key Lab Zhang Zhongjing Formulae & Herbs Im, Nanyang City 473000, Henan, Peoples R China
来源
BIORESOURCES | 2020年 / 15卷 / 03期
基金
美国国家科学基金会;
关键词
Xichuan Guild Hall; Old architectures; Wooden components; Degradation behavior; Chemical composition changes; XPS; CHEMICAL-COMPOSITION; WHITE-ROT; XPS; FTIR; SURFACES; LIGNIN; DECAY;
D O I
10.15376/biores.15.3.6332-6343
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
To investigate the decay mechanisms of red oak (Quercus rubra) and hemor (Schima spp.) woods in the old architectural structure of Xichuan Guild Hall, chemical composition changes were determined and analyzed with X-ray photoelectron spectroscopy (XPS). The results showed that decaying resulted in a noticeable decrease of the O/C from 0.59 to 0.42 in the red oak wooden components. The increase of C-1 contribution, decrease of C-4 contribution, increase of O-1 and O-3 contributions, and decrease of O-2 contribution indicated that the carbohydrates in red oak wooden components can be easily degraded by fungi compared with lignin. Moreover, decaying resulted in a slight decrease of the O/C from 0.49 to 0.47 in the hemor wooden components. The results of increase of C-1 contribution, decrease of C-3 and C-4 contributions, increase of O-1, and decrease of O-2 and O-3 contributions indicated that carbohydrate and lignin were all degraded by fungi.
引用
收藏
页码:6332 / 6343
页数:12
相关论文
共 50 条
  • [21] APPLICATION OF X-RAY PHOTOELECTRON SPECTROSCOPY TO CHEMICAL ANALYSIS
    HELMER, JC
    APPLIED SPECTROSCOPY, 1969, 23 (06) : 671 - &
  • [22] Chemical Analysis of Materials with X-ray Photoelectron Spectroscopy
    Quadrelli, A.
    Jarvis, S. P.
    SURFACE COATINGS INTERNATIONAL, 2022, 105 (05): : 382 - 383
  • [23] On line shape analysis in X-ray photoelectron spectroscopy
    Werner, WSM
    Cabela, T
    Zemek, J
    Jiricek, P
    SURFACE SCIENCE, 2001, 470 (03) : 325 - 336
  • [24] Analysis of Sunflower Shells by X-ray Photoelectron Spectroscopy
    Jiang, Guilin
    Husseini, Ghaleb A.
    Baxter, Larry L.
    Linford, Matthew R.
    Surface Science Spectra, 2004, 11 (01): : 119 - 126
  • [25] Surface analysis of collophane by X-ray photoelectron spectroscopy
    Huang, Xiaofen
    Zhang, Qin
    Peng, Chuang
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 3511 - 3516
  • [26] Quantitative surface analysis by X-ray photoelectron spectroscopy
    Jablonski, A
    POLISH JOURNAL OF CHEMISTRY, 2000, 74 (11) : 1533 - 1566
  • [27] Quantitative analysis of saccharides by X-ray photoelectron spectroscopy
    Stevens, Joanna S.
    Schroeder, Sven L. M.
    SURFACE AND INTERFACE ANALYSIS, 2009, 41 (06) : 453 - 462
  • [28] Algorithm for automatic x-ray photoelectron spectroscopy data processing and x-ray photoelectron spectroscopy imaging
    Tougaard, S
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2005, 23 (04): : 741 - 745
  • [29] Surface analysis of dental amalgams by X-ray photoelectron spectroscopy and X-ray diffraction
    Uo, M
    Berglund, A
    Cardenas, J
    Pohl, L
    Watari, F
    Bergman, M
    Sjöberg, S
    DENTAL MATERIALS, 2003, 19 (07) : 639 - 644
  • [30] X-ray photoelectron spectroscopy in the hard X-ray regime
    Fadley, C. S.
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2007, 156 : XXXVI - XXXVI