A Markov Chain Monte Carlo Approach to Nonlinear Parametric System Identification

被引:4
|
作者
Bai, Er-Wei [1 ,2 ]
Ishii, Hideaki [3 ]
Tempo, Roberto [4 ]
机构
[1] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[2] Queens Univ, Sch Elect, Elect Engn, Belfast BT9 6AZ, Antrim, North Ireland
[3] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Yokohama, Kanagawa 2268503, Japan
[4] Politecn Torino, IEIIT CNR, I-10129 Turin, Italy
基金
美国国家科学基金会;
关键词
Monte Carlo; parameter estimation; system identification; SET-MEMBERSHIP IDENTIFICATION; COMPLEXITY;
D O I
10.1109/TAC.2014.2380997
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonlinear system identification is discussed in a mixed set-membership and statistical setting. A Markov chain Monte Carlo (MCMC) approach is proposed that estimates the feasible parameter set, the minimum volume outer-bounding ellipsoid and the minimum variance estimate. The proposed algorithm is proved to be convergent and enjoys some desirable properties. Further, its computational complexity and numerical accuracy are studied.
引用
收藏
页码:2542 / 2546
页数:5
相关论文
共 50 条
  • [1] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    BERNOULLI, 2011, 17 (03) : 987 - 1014
  • [2] System identification using evolutionary Markov chain Monte Carlo
    Zhang, BT
    Cho, DY
    JOURNAL OF SYSTEMS ARCHITECTURE, 2001, 47 (07) : 587 - 599
  • [3] System identification using evolutionary Markov chain Monte Carlo
    Zhang, B.-T.
    Cho, D.-Y.
    2001, Elsevier (47)
  • [4] Bayesian system identification via Markov chain Monte Carlo techniques
    Ninness, Brett
    Henriksen, Soren
    AUTOMATICA, 2010, 46 (01) : 40 - 51
  • [5] A Markov chain Monte Carlo approach to stereovision
    Sénégas, J
    COMPUTER VISION - ECCV 2002 PT III, 2002, 2352 : 97 - 111
  • [6] A Markov Chain Monte Carlo approach for the estimation of photovoltaic system parameters
    Laevens, Benjamin P. M.
    Pijpers, Frank P.
    Boonstra, Harm Jan
    Sark, Wilfried G. J. H. M.
    ten Bosch, Olav
    SOLAR ENERGY, 2023, 265
  • [7] Feature correspondence: A Markov chain Monte Carlo approach
    Dellaert, F
    Seitz, SM
    Thrun, S
    Thorpe, C
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 852 - 858
  • [8] Estimating demands with a Markov chain Monte Carlo approach
    Qin, T.
    Boccelli, D. L.
    12TH INTERNATIONAL CONFERENCE ON COMPUTING AND CONTROL FOR THE WATER INDUSTRY, CCWI2013, 2014, 70 : 1386 - 1390
  • [9] A geometric approach to transdimensional Markov chain Monte Carlo
    Petris, G
    Tardella, L
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (04): : 469 - 482
  • [10] Interface identification using a GPR signal: A Monte Carlo Markov Chain approach.
    Coatanhay, A
    Szkolnik, JJ
    PROCEEDINGS OF THE 2002 IEEE RADAR CONFERENCE, 2002, : 58 - 62