A Markov Chain Monte Carlo Approach to Nonlinear Parametric System Identification

被引:4
|
作者
Bai, Er-Wei [1 ,2 ]
Ishii, Hideaki [3 ]
Tempo, Roberto [4 ]
机构
[1] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[2] Queens Univ, Sch Elect, Elect Engn, Belfast BT9 6AZ, Antrim, North Ireland
[3] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Yokohama, Kanagawa 2268503, Japan
[4] Politecn Torino, IEIIT CNR, I-10129 Turin, Italy
基金
美国国家科学基金会;
关键词
Monte Carlo; parameter estimation; system identification; SET-MEMBERSHIP IDENTIFICATION; COMPLEXITY;
D O I
10.1109/TAC.2014.2380997
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonlinear system identification is discussed in a mixed set-membership and statistical setting. A Markov chain Monte Carlo (MCMC) approach is proposed that estimates the feasible parameter set, the minimum volume outer-bounding ellipsoid and the minimum variance estimate. The proposed algorithm is proved to be convergent and enjoys some desirable properties. Further, its computational complexity and numerical accuracy are studied.
引用
收藏
页码:2542 / 2546
页数:5
相关论文
共 50 条
  • [41] A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    Cowles, MK
    Rosenthal, JS
    STATISTICS AND COMPUTING, 1998, 8 (02) : 115 - 124
  • [42] Distinguishing migration from isolation: A Markov chain Monte Carlo approach
    Nielsen, R
    Wakeley, J
    GENETICS, 2001, 158 (02) : 885 - 896
  • [43] Feature selection by Markov chain Monte Carlo sampling - A Bayesian approach
    Egmont-Petersen, M
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 1034 - 1042
  • [44] Markov chain Monte Carlo estimation of nonlinear dynamics from time series
    Bremer, CL
    Kaplan, DT
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 160 (1-2) : 116 - 126
  • [45] Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion
    de Figueiredo, Leandro Passos
    Grana, Dario
    Roisenberg, Mauro
    Rodrigues, Bruno B.
    GEOPHYSICS, 2019, 84 (05) : M1 - M13
  • [46] Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem
    Malinverno, A
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2002, 151 (03) : 675 - 688
  • [47] Identification of Contact Failures in Multilayered Composites With the Markov Chain Monte Carlo Method
    Abreu, L. A.
    Orlande, H. R. B.
    Kaipio, J.
    Kolehmainen, V.
    Cotta, R. M.
    Quaresma, J. N. N.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2014, 136 (10):
  • [48] Multiple Damage Identification Using the Reversible Jump Markov Chain Monte Carlo
    Tiboaca, Daniela
    Barthorpe, Robert J.
    Antoniadou, Ifigeneia
    Worden, Keith
    STRUCTURAL HEALTH MONITORING 2015: SYSTEM RELIABILITY FOR VERIFICATION AND IMPLEMENTATION, VOLS. 1 AND 2, 2015, : 2374 - 2382
  • [49] Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals
    South, L. F.
    Pettitt, A. N.
    Drovandi, C. C.
    BAYESIAN ANALYSIS, 2019, 14 (03): : 753 - 776
  • [50] On adaptive Markov chain Monte Carlo algorithms
    Atchadé, YF
    Rosenthal, JS
    BERNOULLI, 2005, 11 (05) : 815 - 828