A Markov Chain Monte Carlo Approach to Nonlinear Parametric System Identification

被引:4
|
作者
Bai, Er-Wei [1 ,2 ]
Ishii, Hideaki [3 ]
Tempo, Roberto [4 ]
机构
[1] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[2] Queens Univ, Sch Elect, Elect Engn, Belfast BT9 6AZ, Antrim, North Ireland
[3] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Yokohama, Kanagawa 2268503, Japan
[4] Politecn Torino, IEIIT CNR, I-10129 Turin, Italy
基金
美国国家科学基金会;
关键词
Monte Carlo; parameter estimation; system identification; SET-MEMBERSHIP IDENTIFICATION; COMPLEXITY;
D O I
10.1109/TAC.2014.2380997
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonlinear system identification is discussed in a mixed set-membership and statistical setting. A Markov chain Monte Carlo (MCMC) approach is proposed that estimates the feasible parameter set, the minimum volume outer-bounding ellipsoid and the minimum variance estimate. The proposed algorithm is proved to be convergent and enjoys some desirable properties. Further, its computational complexity and numerical accuracy are studied.
引用
收藏
页码:2542 / 2546
页数:5
相关论文
共 50 条
  • [31] THE MARKOV CHAIN MONTE CARLO REVOLUTION
    Diaconis, Persi
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 179 - 205
  • [32] MARKOV CHAIN MONTE CARLO AND IRREVERSIBILITY
    Ottobre, Michela
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (03) : 267 - 292
  • [33] Simple Engine Exhaust Temperature Modeling and System Identification Based on Markov Chain Monte Carlo
    Ye, Zhengmao
    Mohamadian, Habib
    ADVANCED MATERIALS, MECHANICS AND INDUSTRIAL ENGINEERING, 2014, 598 : 224 - 228
  • [34] STEREOGRAPHIC MARKOV CHAIN MONTE CARLO
    Yang, Jun
    Latuszynski, Krzysztof
    Roberts, Gareth o.
    ANNALS OF STATISTICS, 2024, 52 (06): : 2692 - 2713
  • [35] Markov chain Monte Carlo techniques in iterative detectors: A novel approach based on Monte Carlo integration
    Shi, ZN
    Zhu, HD
    Farhang-Boroujeny, B
    GLOBECOM '04: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6, 2004, : 325 - 329
  • [36] A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis
    Michael C. Edwards
    Psychometrika, 2010, 75 : 474 - 497
  • [37] A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    MARY KATHRYN COWLES
    JEFFREY S. ROSENTHAL
    Statistics and Computing, 1998, 8 : 115 - 124
  • [38] Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach
    Parpas, Panos
    Ustun, Berk
    Webster, Mort
    Quang Kha Tran
    INFORMS JOURNAL ON COMPUTING, 2015, 27 (02) : 358 - 377
  • [39] Dark energy and cosmic curvature: Monte Carlo Markov chain approach
    Gong, Yungui
    Wu, Qiang
    Wang, Anzhong
    ASTROPHYSICAL JOURNAL, 2008, 681 (01): : 27 - 39
  • [40] A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis
    Edwards, Michael C.
    PSYCHOMETRIKA, 2010, 75 (03) : 474 - 497