System identification using evolutionary Markov chain Monte Carlo

被引:13
|
作者
Zhang, BT [1 ]
Cho, DY [1 ]
机构
[1] Seoul Natl Univ, Sch Comp Sci & Engn, SCAI, Artificial Intelligence Lab, Seoul 151742, South Korea
关键词
system identification; Markov chain; Monte Carlo;
D O I
10.1016/S1383-7621(01)00017-0
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
System identification involves determination of the functional structure of a target system that underlies the observed data. In this paper, we present a probabilistic evolutionary method that optimizes system architectures for the identification of unknown target systems. The method is distinguished from existing evolutionary algorithms (EAs) in that the individuals are generated from a probability distribution as in Markov chain Monte Carlo (MCMC). It is also distinguished from conventional MCMC methods in that the search is population-based as in standard evolutionary algorithms. The effectiveness of this hybrid of evolutionary computation and MCMC is tested on a practical problem, i.e., evolving neural net architectures for the identification of nonlinear dynamic systems. Experimental evidence supports that evolutionary MCMC (or eMCMC) exploits the efficiency of simple evolutionary algorithms while maintaining the robustness of MCMC methods and outperforms either approach used alone. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:587 / 599
页数:13
相关论文
共 50 条
  • [1] System identification using evolutionary Markov chain Monte Carlo
    Zhang, B.-T.
    Cho, D.-Y.
    2001, Elsevier (47)
  • [2] Evolutionary Markov chain Monte Carlo
    Drugan, MM
    Thierens, D
    ARTIFICIAL EVOLUTION, 2004, 2936 : 63 - 76
  • [3] Bayesian system identification via Markov chain Monte Carlo techniques
    Ninness, Brett
    Henriksen, Soren
    AUTOMATICA, 2010, 46 (01) : 40 - 51
  • [4] A Markov Chain Monte Carlo Approach to Nonlinear Parametric System Identification
    Bai, Er-Wei
    Ishii, Hideaki
    Tempo, Roberto
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2542 - 2546
  • [5] Markov chain Monte Carlo using an approximation
    Christen, JA
    Fox, C
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (04) : 795 - 810
  • [6] Finite Element Model Updating Using an Evolutionary Markov Chain Monte Carlo Algorithm
    Boulkaibet, I.
    Mthembu, L.
    Marwala, T.
    Friswell, M. I.
    Adhikari, S.
    DYNAMICS OF CIVIL STRUCTURES, VOL 2, 2015, : 245 - 253
  • [7] Multiple Damage Identification Using the Reversible Jump Markov Chain Monte Carlo
    Tiboaca, Daniela
    Barthorpe, Robert J.
    Antoniadou, Ifigeneia
    Worden, Keith
    STRUCTURAL HEALTH MONITORING 2015: SYSTEM RELIABILITY FOR VERIFICATION AND IMPLEMENTATION, VOLS. 1 AND 2, 2015, : 2374 - 2382
  • [8] Markov Chain Monte Carlo
    Henry, Ronnie
    EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [9] Markov Chain Monte Carlo methods in human skeletal identification
    Konigsberg, Lyle W.
    Frankenberg, Susan R.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2018, 165 : 144 - 144
  • [10] Markov chain monte carlo defect identification in nde images
    Dogandzic, Aleksandar
    Zhang, Benhong
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 26A AND 26B, 2007, 894 : 709 - +