Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning

被引:0
|
作者
Sobhaninia, Zahra [1 ]
Rafiei, Shima [1 ]
Emami, Ali [1 ]
Karimi, Nader [1 ]
Najarian, Kayvan [1 ,2 ]
Samavi, Shadrokh [3 ,4 ]
Soroushmehr, S. M. Reza [3 ,4 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
关键词
D O I
10.1109/embc.2019.8856981
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.
引用
收藏
页码:6545 / 6548
页数:4
相关论文
共 50 条
  • [31] Multi-task deep learning for crack segmentation and quantification in RC structures
    Chen, Yi-Chang
    Wu, Rih-Teng
    Puranam, Aishwarya
    AUTOMATION IN CONSTRUCTION, 2024, 166
  • [32] Bacterial image analysis using multi-task deep learning approaches for clinical microscopy
    Chin, Shuang Yee
    Dong, Jian
    Hasikin, Khairunnisa
    Ngui, Romano
    Lai, Khin Wee
    Yeoh, Pauline Shan Qing
    Wu, Xiang
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [33] Automatic tongue image quality assessment using a multi-task deep learning model
    Xian, Huimin
    Xie, Yanyan
    Yang, Zizhu
    Zhang, Linzi
    Li, Shangxuan
    Shang, Hongcai
    Zhou, Wu
    Zhang, Honglai
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [34] Bacterial image analysis using multi-task deep learning approaches for clinical microscopy
    Chin, Shuang Yee
    Dong, Jian
    Hasikin, Khairunnisa
    Ngui, Romano
    Lai, Khin Wee
    Yeoh, Pauline Shan Qing
    Wu, Xiang
    PeerJ Computer Science, 2024, 10
  • [35] A Multi-task Approach Using Positional Information for Ultrasound Placenta Segmentation
    Zimmer, Veronika A.
    Gomez, Alberto
    Skelton, Emily
    Ghavami, Nooshin
    Wright, Robert
    Li, Lei
    Matthew, Jacqueline
    Hajnal, Joseph V.
    Schnabel, Julia A.
    MEDICAL ULTRASOUND, AND PRETERM, PERINATAL AND PAEDIATRIC IMAGE ANALYSIS, ASMUS 2020, PIPPI 2020, 2020, 12437 : 264 - 273
  • [36] Fetal Cardiac Structure Detection Using Multi-task Learning
    He, Jie
    Yang, Lei
    Zhu, Yunping
    Li, Donglian
    Ding, Zhixing
    Lu, Yuhuan
    Liang, Bocheng
    Li, Shengli
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT II, ICIC 2024, 2024, 14882 : 405 - 419
  • [37] Integrating with Segmentation by Using Multi-Task Learning Improves Classification Performance in Medical Image Analysis
    Li, Yi
    Zhao, Yuanyuan
    Wang, Mingyu
    Li, Fei
    Chen, Jia
    Luo, Yanji
    Feng, Shi-Ting
    Lin, Xiaoyi
    Huang, Bingsheng
    2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2022, : 351 - 354
  • [38] INSIGHTS INTO THE BEHAVIOUR OF MULTI-TASK DEEP NEURAL NETWORKS FOR MEDICAL IMAGE SEGMENTATION
    Bienias, Lukasz T.
    Guillamon, Juanjo R.
    Nielsen, Line H.
    Alstrom, Tommy S.
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [39] Multi-task learning for segmentation and classification of breast tumors from ultrasound images
    He Q.
    Yang Q.
    Su H.
    Wang Y.
    Computers in Biology and Medicine, 2024, 173
  • [40] Pareto Multi-task Deep Learning
    Riccio, Salvatore D.
    Dyankov, Deyan
    Jansen, Giorgio
    Di Fatta, Giuseppe
    Nicosia, Giuseppe
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II, 2020, 12397 : 132 - 141