Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning

被引:0
|
作者
Sobhaninia, Zahra [1 ]
Rafiei, Shima [1 ]
Emami, Ali [1 ]
Karimi, Nader [1 ]
Najarian, Kayvan [1 ,2 ]
Samavi, Shadrokh [3 ,4 ]
Soroushmehr, S. M. Reza [3 ,4 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
关键词
D O I
10.1109/embc.2019.8856981
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.
引用
收藏
页码:6545 / 6548
页数:4
相关论文
共 50 条
  • [11] Red Lesion Segmentation of Fundus Image with Multi-task Learning
    Guo S.
    Li T.
    Li N.
    Kang H.
    Zhang Y.-J.
    Wang K.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (11): : 3646 - 3658
  • [12] Multi-task learning for ultrasound image formation and segmentation directly from raw in vivo data
    Bhatt, Manish
    Nair, Arun Asokan
    Kempski, Kelley M.
    Bell, Muyinatu A. Lediju
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2020,
  • [13] A Regional-Attentive Multi-Task Learning Framework for Breast Ultrasound Image Segmentation and Classification
    Xu, Meng
    Huang, Kuan
    Qi, Xiaojun
    IEEE ACCESS, 2023, 11 : 5377 - 5392
  • [14] Enhanced Strawberry Image Classification Using Multi-Task Deep Neural Learning
    De Alwis, Sandya
    Ofoghi, Bahadorreza
    Na, Myung Hwan
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 971 - 978
  • [15] Multi-task Learning to Improve Semantic Segmentation of CBCT Scans using Image Reconstruction
    Tschuchnig, Maximilian E.
    Coste-Marin, Julia
    Steininger, Philipp
    Gadermayr, Michael
    BILDVERARBEITUNG FUR DIE MEDIZIN 2024, 2024, : 243 - 248
  • [16] Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
    van der Voort, Sebastian R.
    Incekara, Fatih
    Wijnenga, Maarten M. J.
    Kapsas, Georgios
    Gahrmann, Renske
    Schouten, Joost W.
    Tewarie, Rishi Nandoe
    Lycklama, Geert J.
    Hamer, Philip C. De Witt
    Eijgelaar, Roelant S.
    French, Pim J.
    Dubbink, Hendrikus J.
    Vincent, Arnaud J. P. E.
    Niessen, Wiro J.
    van den Bent, Martin J.
    Smits, Marion
    Klein, Stefan
    NEURO-ONCOLOGY, 2023, 25 (02) : 279 - 289
  • [17] Multi-task learning for gland segmentation
    Rezazadeh, Iman
    Duygulu, Pinar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (01) : 1 - 9
  • [18] Multi-task learning for quality assessment of fetal head ultrasound images
    Lin, Zehui
    Li, Shengli
    Ni, Dong
    Liao, Yimei
    Wen, Huaxuan
    Du, Jie
    Chen, Siping
    Wang, Tianfu
    Lei, Baiying
    MEDICAL IMAGE ANALYSIS, 2019, 58
  • [19] Multi-Task Learning for Subspace Segmentation
    Wang, Yu
    Wipf, David
    Ling, Qing
    Chen, Wei
    Wassell, Ian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1209 - 1217
  • [20] Multi-task learning for gland segmentation
    Iman Rezazadeh
    Pinar Duygulu
    Signal, Image and Video Processing, 2023, 17 : 1 - 9