Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning

被引:0
|
作者
Sobhaninia, Zahra [1 ]
Rafiei, Shima [1 ]
Emami, Ali [1 ]
Karimi, Nader [1 ]
Najarian, Kayvan [1 ,2 ]
Samavi, Shadrokh [3 ,4 ]
Soroushmehr, S. M. Reza [3 ,4 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
关键词
D O I
10.1109/embc.2019.8856981
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.
引用
收藏
页码:6545 / 6548
页数:4
相关论文
共 50 条
  • [21] Image Captioning with Deep Bidirectional LSTMs and Multi-Task Learning
    Wang, Cheng
    Yang, Haojin
    Meinel, Christoph
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2018, 14 (02)
  • [22] Deep multi-task learning for image/video distortions identification
    Zoubida Ameur
    Sid Ahmed Fezza
    Wassim Hamidouche
    Neural Computing and Applications, 2022, 34 : 21607 - 21623
  • [23] Hand Image Understanding via Deep Multi-Task Learning
    Zhang, Xiong
    Huang, Hongsheng
    Tan, Jianchao
    Xu, Hongmin
    Yang, Cheng
    Peng, Guozhu
    Wang, Lei
    Liu, Ji
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 11261 - 11272
  • [24] Deep multi-task learning for image/video distortions identification
    Ameur, Zoubida
    Fezza, Sid Ahmed
    Hamidouche, Wassim
    Neural Computing and Applications, 2022, 34 (24) : 21607 - 21623
  • [25] Deep multi-task learning for image/video distortions identification
    Ameur, Zoubida
    Fezza, Sid Ahmed
    Hamidouche, Wassim
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (24): : 21607 - 21623
  • [26] Multi-task learning for digital rock segmentation and characteristic parameters computation
    Cao, Danping
    Ji, Siqi
    Cui, Rongang
    Liu, Qiang
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [27] Joint face alignment and segmentation via deep multi-task learning
    Zhao, Yucheng
    Tang, Fan
    Dong, Weiming
    Huang, Feiyue
    Zhang, Xiaopeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (10) : 13131 - 13148
  • [28] Multi-task Deep Learning for Segmentation and Landmark Detection in Obstetric Sonography
    Allan, Michael B.
    Jafari, Mohammad H.
    Woudenberg, Nathan, V
    Frenkel, Oron
    Murphy, Darra
    Wee, Tracee
    D'Ortenzio, Rob
    Wu, Yong
    Roberts, James
    Shatani, Naoya
    Gu, Ang Nan
    Sojoudi, Samira
    Abolmaesumi, Purang
    MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2022, 12034
  • [29] MULTI-TASK LEARNING FOR SEGMENTATION OF BUILDING FOOTPRINTS WITH DEEP NEURAL NETWORKS
    Bischke, Benjamin
    Helber, Patrick
    Folz, Joachim
    Borth, Damian
    Dengel, Andreas
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1480 - 1484
  • [30] Joint face alignment and segmentation via deep multi-task learning
    Yucheng Zhao
    Fan Tang
    Weiming Dong
    Feiyue Huang
    Xiaopeng Zhang
    Multimedia Tools and Applications, 2019, 78 : 13131 - 13148