Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning

被引:0
|
作者
Sobhaninia, Zahra [1 ]
Rafiei, Shima [1 ]
Emami, Ali [1 ]
Karimi, Nader [1 ]
Najarian, Kayvan [1 ,2 ]
Samavi, Shadrokh [3 ,4 ]
Soroushmehr, S. M. Reza [3 ,4 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
关键词
D O I
10.1109/embc.2019.8856981
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.
引用
收藏
页码:6545 / 6548
页数:4
相关论文
共 50 条
  • [1] Automatic fetal ultrasound image segmentation of first trimester for measuring biometric parameters based on deep learning
    Liu, Lijue
    Tang, Duo
    Li, Xihong
    Ouyang, Yan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27283 - 27304
  • [2] Automatic fetal ultrasound image segmentation of first trimester for measuring biometric parameters based on deep learning
    Lijue Liu
    Duo Tang
    Xihong Li
    Yan Ouyang
    Multimedia Tools and Applications, 2024, 83 : 27283 - 27304
  • [3] Multi-Task Deep Learning for Image Segmentation Using Recursive Approximation Tasks
    Ke, Rihuan
    Bugeau, Aurelie
    Papadakis, Nicolas
    Kirkland, Mark
    Schuetz, Peter
    Schonlieb, Carola-Bibiane
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3555 - 3567
  • [4] MULTI-TASK DEEP LEARNING FOR SATELLITE IMAGE PANSHARPENING AND SEGMENTATION
    Khalel, Andrew
    Tasar, Onur
    Charpiat, Guillaume
    Tarabalka, Yuliya
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4869 - 4872
  • [5] Multi-task Deep Learning for Image Understanding
    Yu, Bo
    Lane, Ian
    2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2014, : 37 - 42
  • [6] X-ray Image Segmentation using Multi-task Learning
    Park, Sejin
    Jeong, Woojin
    Moon, Young Shik
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (03) : 1104 - 1120
  • [7] Representation Disentanglement for Multi-task Learning with Application to Fetal Ultrasound
    Meng, Qingjie
    Pawlowski, Nick
    Rueckert, Daniel
    Kainz, Bernhard
    SMART ULTRASOUND IMAGING AND PERINATAL, PRETERM AND PAEDIATRIC IMAGE ANALYSIS, SUSI 2019, PIPPI 2019, 2019, 11798 : 47 - 55
  • [8] Boundary-aware Segmentation Network Using Multi-Task Enhancement for Ultrasound Image
    Yu, Ruiguo
    Hu, Jiachen
    Yu, Mei
    Wei, Xi
    Jiang, Han
    Zhu, Jialin
    Liu, Zhiqiang
    Gao, Jie
    Li, Xuewei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1210 - 1214
  • [9] Deep multi-task learning for malware image classification
    Bensaoud, Ahmed
    Kalita, Jugal
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2022, 64
  • [10] A Deep Multi-Task Learning Framework for Brain Tumor Segmentation
    Huang, He
    Yang, Guang
    Zhang, Wenbo
    Xu, Xiaomei
    Yang, Weiji
    Jiang, Weiwei
    Lai, Xiaobo
    FRONTIERS IN ONCOLOGY, 2021, 11