Left Invariant Einstein-Randers Metrics on Compact Lie Groups

被引:9
|
作者
Wang, Hui [1 ]
Deng, Shaoqiang [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210003, Jiangsu, Peoples R China
[2] Nankai Univ, Coll Math, Tianjin 300071, Peoples R China
关键词
Einstein-Randers metric; compact Lie groups; geodesic; flag curvature; ISOMETRIES; GEODESICS;
D O I
10.4153/CMB-2011-145-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study left invariant Einstein-Randers metrics on compact Lie groups. First, we give a method to construct left invariant non-Riemannian Einstein-Randers metrics on a compact Lie group, using the Zermelo navigation data. Then we prove that this gives a complete classification of left invariant Einstein-Randers metrics on compact simple Lie groups with the underlying Riemannian metric naturally reductive. Further, we completely determine the identity component of the group of isometries for this type of metrics on simple groups. Finally, we study some geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature of such metrics.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 50 条
  • [1] Einstein-Randers metrics on compact simple Lie groups
    Li, Xiaosheng
    Chen, Huibin
    Chen, Zhiqi
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (1-2): : 149 - 160
  • [2] Invariant Einstein-Randers metrics on Stiefel manifolds
    Wang, Hui
    Deng, Shaoqiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 594 - 600
  • [3] Homogeneous Einstein-Randers metrics on symplectic groups
    Tan, Ju
    Xu, Na
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (02) : 1902 - 1913
  • [4] CLIFFORD-WOLF TRANSLATIONS OF LEFT INVARIANT RANDERS METRICS ON COMPACT LIE GROUPS
    Deng, Shaoqiang
    Xu, Ming
    QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (01): : 133 - 148
  • [5] Left-Invariant Einstein-like Metrics on Compact Lie Groups
    Wu, An
    Sun, Huafei
    MATHEMATICS, 2022, 10 (09)
  • [6] Some remarks on Einstein-Randers metrics
    Tang, Xiaoyun
    Yu, Changtao
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 : 83 - 102
  • [7] Homogeneous Einstein-Randers metrics on spheres
    Wang, Hui
    Huang, Libing
    Deng, Shaoqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6295 - 6301
  • [8] Left invariant Randers metrics of Berwald type on tangent Lie groups
    Asgari, Farhad
    Moghaddam, Hamid Reza Salimi
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (01)
  • [9] Einstein metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Chen, Chao
    Chen, Zhiqi
    Hu, Yuwang
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (04)
  • [10] A remark on left invariant metrics on compact Lie groups
    Schwachhoefer, Lorenz J.
    ARCHIV DER MATHEMATIK, 2008, 90 (02) : 158 - 162