DIFFUSION ENTROPY METHOD FOR ULTRASLOW DIFFUSION USING INVERSE MITTAG-LEFFLER FUNCTION

被引:10
|
作者
Liang, Yingjie [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Inst Soft Matter Mech, State Key Lab Hydrol Water Resources & Hydraul En, 8 Focheng West Rd, Nanjing 211100, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultraslow diffusion; diffusion entropy; structural derivative; inverse Mittag-Leffler function; fractional entropy; ANOMALOUS DIFFUSION;
D O I
10.1515/fca-2018-0007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study analyzes the complexity of ultraslow diffusion process using both the classical Shannon entropy and its general case with inverse Mittag-Leffler function in conjunction with the structural derivative. To further describe the observation process with information loss in ultraslow diffusion, e.g., some defects in the observation process, two definitions of fractional entropy are proposed by using the inverse Mittag-Leffler function, in which the Pade approximation technique is employed to numerically estimate the diffusion entropy. The results reveal that the inverse Mittag-Leffler tail in the propagator of the ultraslow diffusion equation model adds more information to the original distribution with larger entropy. Smaller value of a in the inverse Mittag-Leffler function indicates more complicated of the underlying ultraslow diffusion and corresponds to higher value of entropy. The proposed definitions of fractional entropy can serve as candidates to capture the information loss in ultraslow diffusion.
引用
收藏
页码:104 / 117
页数:14
相关论文
共 50 条
  • [41] On the Numerical Computation of the Mittag-Leffler Function
    Ortigueira, Manuel D.
    Lopes, Antonio M.
    Machado, Jose Tenreiro
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (06) : 725 - 736
  • [42] Battery Modeling with Mittag-Leffler Function
    Abdelhafiz, Shahenda M.
    Fouda, Mohammed E.
    Radwan, Ahmed G.
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [43] On Mittag-Leffler type function and applications
    Saigo, M
    Kilbas, AA
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (1-2) : 97 - 112
  • [44] Integral Representation of the Mittag-Leffler Function
    Saenko, V. V.
    RUSSIAN MATHEMATICS, 2022, 66 (04) : 43 - 58
  • [45] On the computation of the multidimensional Mittag-Leffler function
    Ortigueira, Manuel D.
    Lopes, Antonio M.
    Tenreiro Machado, J. A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 53 : 278 - 287
  • [46] Asymptotics for a variant of the Mittag-Leffler function
    Gerhold, Stefan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (06) : 397 - 403
  • [47] Note on generalized Mittag-Leffler function
    Desai, Rachana
    Salehbhai, I. A.
    Shukla, A. K.
    SPRINGERPLUS, 2016, 5
  • [48] A further extension of Mittag-Leffler function
    Maja Andrić
    Ghulam Farid
    Josip Pečarić
    Fractional Calculus and Applied Analysis, 2018, 21 : 1377 - 1395
  • [49] A note on property of the Mittag-Leffler function
    Peng, Jigen
    Li, Kexue
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 635 - 638
  • [50] Solving 2D time-fractional diffusion equations by a pseudospectral method and Mittag-Leffler function evaluation
    Esmaeili, Shahrokh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (06) : 1838 - 1850