DIFFUSION ENTROPY METHOD FOR ULTRASLOW DIFFUSION USING INVERSE MITTAG-LEFFLER FUNCTION

被引:10
|
作者
Liang, Yingjie [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Inst Soft Matter Mech, State Key Lab Hydrol Water Resources & Hydraul En, 8 Focheng West Rd, Nanjing 211100, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultraslow diffusion; diffusion entropy; structural derivative; inverse Mittag-Leffler function; fractional entropy; ANOMALOUS DIFFUSION;
D O I
10.1515/fca-2018-0007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study analyzes the complexity of ultraslow diffusion process using both the classical Shannon entropy and its general case with inverse Mittag-Leffler function in conjunction with the structural derivative. To further describe the observation process with information loss in ultraslow diffusion, e.g., some defects in the observation process, two definitions of fractional entropy are proposed by using the inverse Mittag-Leffler function, in which the Pade approximation technique is employed to numerically estimate the diffusion entropy. The results reveal that the inverse Mittag-Leffler tail in the propagator of the ultraslow diffusion equation model adds more information to the original distribution with larger entropy. Smaller value of a in the inverse Mittag-Leffler function indicates more complicated of the underlying ultraslow diffusion and corresponds to higher value of entropy. The proposed definitions of fractional entropy can serve as candidates to capture the information loss in ultraslow diffusion.
引用
收藏
页码:104 / 117
页数:14
相关论文
共 50 条
  • [31] A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION
    Arshad, Muhammad
    Choi, Junesang
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 549 - 560
  • [32] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395
  • [33] A monotonicity property of the Mittag-Leffler function
    Alzer, Horst
    Kwong, Man Kam
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 181 - 187
  • [34] ON ASYMPTOTICS OF DISCRETE MITTAG-LEFFLER FUNCTION
    Nechvatal, Ludek
    MATHEMATICA BOHEMICA, 2014, 139 (04): : 667 - 675
  • [35] Properties of the Mittag-Leffler Relaxation Function
    Mário N. Berberan-Santos
    Journal of Mathematical Chemistry, 2005, 38 : 629 - 635
  • [36] Exponential asymptotics of the Mittag-Leffler function
    Paris, RB
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2028): : 3041 - 3052
  • [37] More on the Unified Mittag-Leffler Function
    Jung, Chahnyong
    Farid, Ghulam
    Yasmeen, Hafsa
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (03):
  • [38] When is a Mittag-Leffler function a Nussbaum function?
    Li, Yan
    Chen, YangQuan
    AUTOMATICA, 2009, 45 (08) : 1957 - 1959
  • [39] PARTIAL SUMS OF MITTAG-LEFFLER FUNCTION
    Bansal, Deepak
    Orhan, Halit
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 423 - 431
  • [40] Comments on the properties of Mittag-Leffler function
    G. Dattoli
    K. Gorska
    A. Horzela
    S. Licciardi
    R. M. Pidatella
    The European Physical Journal Special Topics, 2017, 226 : 3427 - 3443