DIFFUSION ENTROPY METHOD FOR ULTRASLOW DIFFUSION USING INVERSE MITTAG-LEFFLER FUNCTION

被引:10
|
作者
Liang, Yingjie [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Inst Soft Matter Mech, State Key Lab Hydrol Water Resources & Hydraul En, 8 Focheng West Rd, Nanjing 211100, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultraslow diffusion; diffusion entropy; structural derivative; inverse Mittag-Leffler function; fractional entropy; ANOMALOUS DIFFUSION;
D O I
10.1515/fca-2018-0007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study analyzes the complexity of ultraslow diffusion process using both the classical Shannon entropy and its general case with inverse Mittag-Leffler function in conjunction with the structural derivative. To further describe the observation process with information loss in ultraslow diffusion, e.g., some defects in the observation process, two definitions of fractional entropy are proposed by using the inverse Mittag-Leffler function, in which the Pade approximation technique is employed to numerically estimate the diffusion entropy. The results reveal that the inverse Mittag-Leffler tail in the propagator of the ultraslow diffusion equation model adds more information to the original distribution with larger entropy. Smaller value of a in the inverse Mittag-Leffler function indicates more complicated of the underlying ultraslow diffusion and corresponds to higher value of entropy. The proposed definitions of fractional entropy can serve as candidates to capture the information loss in ultraslow diffusion.
引用
收藏
页码:104 / 117
页数:14
相关论文
共 50 条
  • [21] Exponential asymptotics of the Mittag-Leffler function
    Wong, R
    Zhao, YQ
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (03) : 355 - 385
  • [22] Laplace transform and the Mittag-Leffler function
    Teodoro, G. Sales
    de Oliveira, E. Capelas
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (04) : 595 - 604
  • [23] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [24] Global Padé Approximations of the Generalized Mittag-Leffler Function and its Inverse
    Caibin Zeng
    Yang Quan Chen
    Fractional Calculus and Applied Analysis, 2015, 18 : 1492 - 1506
  • [25] GLOBAL PADE APPROXIMATIONS OF THE GENERALIZED MITTAG-LEFFLER FUNCTION AND ITS INVERSE
    Zeng, Caibin
    Chen, YangQuan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (06) : 1492 - 1506
  • [26] Comments on the properties of Mittag-Leffler function
    Dattoli, G.
    Gorska, K.
    Horzela, A.
    Licciardi, S.
    Pidatella, R. M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18): : 3427 - 3443
  • [27] Computation of the generalized Mittag-Leffler function and its inverse in the complex plane
    Hilfer, R.
    Seybold, H. J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (09) : 637 - 652
  • [28] Properties of the Mittag-Leffler relaxation function
    Berberan-Santos, MN
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) : 629 - 635
  • [29] On Generalized Matrix Mittag-Leffler Function
    Batiha, Iqbal M.
    Jebril, Iqbal H.
    Alshorm, Shameseddin
    Anakira, Nidal
    Alkhazaleh, Shawkat
    IAENG International Journal of Applied Mathematics, 2024, 54 (03) : 576 - 580
  • [30] Integral Representation of the Mittag-Leffler Function
    V. V. Saenko
    Russian Mathematics, 2022, 66 : 43 - 58