DIFFUSION ENTROPY METHOD FOR ULTRASLOW DIFFUSION USING INVERSE MITTAG-LEFFLER FUNCTION

被引:10
|
作者
Liang, Yingjie [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Inst Soft Matter Mech, State Key Lab Hydrol Water Resources & Hydraul En, 8 Focheng West Rd, Nanjing 211100, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultraslow diffusion; diffusion entropy; structural derivative; inverse Mittag-Leffler function; fractional entropy; ANOMALOUS DIFFUSION;
D O I
10.1515/fca-2018-0007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study analyzes the complexity of ultraslow diffusion process using both the classical Shannon entropy and its general case with inverse Mittag-Leffler function in conjunction with the structural derivative. To further describe the observation process with information loss in ultraslow diffusion, e.g., some defects in the observation process, two definitions of fractional entropy are proposed by using the inverse Mittag-Leffler function, in which the Pade approximation technique is employed to numerically estimate the diffusion entropy. The results reveal that the inverse Mittag-Leffler tail in the propagator of the ultraslow diffusion equation model adds more information to the original distribution with larger entropy. Smaller value of a in the inverse Mittag-Leffler function indicates more complicated of the underlying ultraslow diffusion and corresponds to higher value of entropy. The proposed definitions of fractional entropy can serve as candidates to capture the information loss in ultraslow diffusion.
引用
收藏
页码:104 / 117
页数:14
相关论文
共 50 条
  • [1] Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function
    Yingjie Liang
    Fractional Calculus and Applied Analysis, 2018, 21 : 104 - 117
  • [2] STRUCTURAL DERIVATIVE BASED ON INVERSE MITTAG-LEFFLER FUNCTION FOR MODELING ULTRASLOW DIFFUSION
    Chen, Wen
    Liang, Yingjie
    Hei, Xindong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (05) : 1250 - 1261
  • [3] StructuRal Derivative Based on Inverse Mittag-Leffler Function for Modeling Ultraslow Diffusion
    Wen Chen
    Yingjie Liang
    Xindong Hei
    Fractional Calculus and Applied Analysis, 2016, 19 : 1250 - 1261
  • [4] Computation of the inverse Mittag-Leffler function and its application to modeling ultraslow dynamics
    Liang, Yingjie
    Yu, Yue
    Magin, Richard L.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 439 - 452
  • [5] Mittag-Leffler Pattern in Anomalous Diffusion
    Dybiec, Bartlomiej
    ADVANCES IN THE THEORY AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS, 2013, 257 : 141 - 146
  • [6] The enclosure method for an inverse crack problem and the Mittag-Leffler function
    Ikehata, Masaru
    Ohe, Takashi
    INVERSE PROBLEMS, 2008, 24 (01)
  • [7] Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel
    Nguyen Huu Can
    Nguyen Hoang Luc
    Dumitru Baleanu
    Yong Zhou
    Le Dinh Long
    Advances in Difference Equations, 2020
  • [8] Numerical Investigation of the Fractional Diffusion Wave Equation with the Mittag-Leffler Function
    Shafiq, Madiha
    Abbas, Muhammad
    El-Shewy, Emad K.
    Abdelrahman, Mahmoud A. E.
    Abdo, Noura F.
    El-Rahman, Ali A.
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [9] Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel
    Nguyen Huu Can
    Nguyen Hoang Luc
    Baleanu, Dumitru
    Zhou, Yong
    Le Dinh Long
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] SUB-DIFFUSION EQUATIONS WITH MITTAG-LEFFLER NONLINEARITY
    Torebek, Berikbol T.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1669 - 1685