Functional relations for solutions of q-difference equations

被引:4
|
作者
Dreyfus, Thomas [1 ,2 ]
Hardouin, Charlotte [3 ]
Roques, Julien [4 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[4] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, UMR 5208,Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
基金
欧洲研究理事会;
关键词
q-Difference equations; Difference Galois theory; Parametrized difference Galois theory; q-Hypergeometric series; GALOIS THEORY;
D O I
10.1007/s00209-020-02669-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the algebraic relations satisfied by the solutions of q-difference equations and their transforms with respect to an auxiliary operator. Our main tools are the parametrized Galois theories developed in Hardouin and Singer (Math Ann 342(2):333-377, 2008) and Ovchinnikov and Wibmer (Int Math Res Not 12:3962-4018, 2015). The first part of this paper is concerned with the case where the auxiliary operator is a derivation, whereas the second part deals with a q-difference operator. In both cases, we give criteria to guarantee the algebraic independence of a series, solution of a q-difference equation, with either its successive derivatives or its q-transforms. We apply our results to q-hypergeometric series.
引用
收藏
页码:1751 / 1791
页数:41
相关论文
共 50 条
  • [41] ON PROPERTIES OF q-DIFFERENCE EQUATIONS
    Zheng Xiumin
    Chen Zongxuan
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 724 - 734
  • [42] SOLUTION OF Q-DIFFERENCE EQUATIONS
    YANG, KW
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 : 1 - 4
  • [43] ON PROPERTIES OF q-DIFFERENCE EQUATIONS
    郑秀敏
    陈宗煊
    Acta Mathematica Scientia, 2012, 32 (02) : 724 - 734
  • [44] SOME RESULTS ON MEROMORPHIC SOLUTIONS OF Q-DIFFERENCE DIFFERENTIAL EQUATIONS
    Gao, Lingyun
    Gao, Zhenguang
    Liu, Manli
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (03) : 593 - 610
  • [45] On the convergence of generalized power series solutions of q-difference equations
    Renat Gontsov
    Irina Goryuchkina
    Alberto Lastra
    Aequationes mathematicae, 2022, 96 : 579 - 597
  • [46] Holomorphic Solutions to Linear q-Difference Equations in a Banach Space
    Gefter S.L.
    Piven’ A.L.
    Journal of Mathematical Sciences, 2020, 251 (5) : 602 - 614
  • [47] Asymptotic discontinuity of smooth solutions of nonlinear q-difference equations
    Derfel G.A.
    Romanenko E.Yu.
    Sharkovsky A.N.
    Ukrainian Mathematical Journal, 2000, 52 (12) : 1841 - 1857
  • [48] Asymptotic behavior of solutions of fractional nabla q-difference equations
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (01) : 21 - 28
  • [49] Existence of analytic solutions to analytic nonlinear q-difference equations
    Li, Xianyi
    Zhang, Changgui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (02) : 412 - 417
  • [50] On the convergence of generalized power series solutions of q-difference equations
    Gontsov, Renat
    Goryuchkina, Irina
    Lastra, Alberto
    AEQUATIONES MATHEMATICAE, 2022, 96 (03) : 579 - 597