Functional relations for solutions of q-difference equations
被引:4
|
作者:
Dreyfus, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, FranceUniv Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
Dreyfus, Thomas
[1
,2
]
Hardouin, Charlotte
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, FranceUniv Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
Hardouin, Charlotte
[3
]
Roques, Julien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, UMR 5208,Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, FranceUniv Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
Roques, Julien
[4
]
机构:
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[4] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, UMR 5208,Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
In this paper, we study the algebraic relations satisfied by the solutions of q-difference equations and their transforms with respect to an auxiliary operator. Our main tools are the parametrized Galois theories developed in Hardouin and Singer (Math Ann 342(2):333-377, 2008) and Ovchinnikov and Wibmer (Int Math Res Not 12:3962-4018, 2015). The first part of this paper is concerned with the case where the auxiliary operator is a derivation, whereas the second part deals with a q-difference operator. In both cases, we give criteria to guarantee the algebraic independence of a series, solution of a q-difference equation, with either its successive derivatives or its q-transforms. We apply our results to q-hypergeometric series.
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Jiangxi Normal Univ, Inst Math & Informat Sci, Nanchang 330022, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Zheng, Xiu-Min
Chen, Zong-Xuan
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
机构:
Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330013, Peoples R ChinaJiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330013, Peoples R China
Jiang, Yeyang
Chen, Zongxuan
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R ChinaJiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330013, Peoples R China
机构:
Shangrao Normal Univ, Sch Math & Comp Sci, Shangrao 334001, Jiangxi, Peoples R ChinaShangrao Normal Univ, Sch Math & Comp Sci, Shangrao 334001, Jiangxi, Peoples R China
Xu, Hong Yan
Tu, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Dept Math, Nanchan 330022, Jiangxi, Peoples R ChinaShangrao Normal Univ, Sch Math & Comp Sci, Shangrao 334001, Jiangxi, Peoples R China
机构:
China Univ Mining & Technol, Coll Sci, Xuzhou 221116, Peoples R ChinaChina Univ Mining & Technol, Coll Sci, Xuzhou 221116, Peoples R China
Zhang, Jie
Zhang, Jianjun
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Second Normal Univ, Math & Informat Technol Sch, Nanjing 210013, Jiangsu, Peoples R ChinaChina Univ Mining & Technol, Coll Sci, Xuzhou 221116, Peoples R China
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Univ Eastern Finland, Dept Phys & Math, Joensuu 80101, FinlandSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China