Functional relations for solutions of q-difference equations

被引:4
|
作者
Dreyfus, Thomas [1 ,2 ]
Hardouin, Charlotte [3 ]
Roques, Julien [4 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[4] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, UMR 5208,Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
基金
欧洲研究理事会;
关键词
q-Difference equations; Difference Galois theory; Parametrized difference Galois theory; q-Hypergeometric series; GALOIS THEORY;
D O I
10.1007/s00209-020-02669-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the algebraic relations satisfied by the solutions of q-difference equations and their transforms with respect to an auxiliary operator. Our main tools are the parametrized Galois theories developed in Hardouin and Singer (Math Ann 342(2):333-377, 2008) and Ovchinnikov and Wibmer (Int Math Res Not 12:3962-4018, 2015). The first part of this paper is concerned with the case where the auxiliary operator is a derivation, whereas the second part deals with a q-difference operator. In both cases, we give criteria to guarantee the algebraic independence of a series, solution of a q-difference equation, with either its successive derivatives or its q-transforms. We apply our results to q-hypergeometric series.
引用
收藏
页码:1751 / 1791
页数:41
相关论文
共 50 条
  • [32] Rational solutions of linear difference and q-difference equations with polynomial coefficients
    Abramov, S.A.
    Programmirovanie, (05): : 3 - 12
  • [33] The solutions of one type q-difference functional system
    Xu, Yonglin
    Han, Dengli
    Fan, Xiaohong
    Wang, Gang
    Zhong, Hua
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [34] The solutions of one type q-difference functional system
    Yonglin Xu
    Dengli Han
    Xiaohong Fan
    Gang Wang
    Hua Zhong
    Advances in Difference Equations, 2014
  • [35] Some Properties of Solutions for Some Types of Q-Difference Equations Originated from Q-Difference Painlevé Equation
    Hongyan XU
    Xiumin ZHENG
    JournalofMathematicalResearchwithApplications, 2020, 40 (05) : 507 - 518
  • [36] Asymptotics of q-difference equations
    Garoufalidis, Stavros
    Geronimo, Jeffrey S.
    PRIMES AND KNOTS, 2006, 416 : 83 - 114
  • [37] NONLINEAR Q-DIFFERENCE EQUATIONS
    STEPHENS, CF
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (09) : 874 - 874
  • [38] q-difference equations.
    Jackson, FH
    AMERICAN JOURNAL OF MATHEMATICS, 1910, 32 : 305 - 314
  • [39] Fractional q-Difference Equations
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : 223 - 270
  • [40] Linear q-difference equations
    Abu Risha, M. H.
    Annaby, M. H.
    Ismail, M. E. H.
    Mansour, Z. S.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (04): : 481 - 494