Hybridizing physical and data-driven prediction methods for physicochemical properties

被引:23
|
作者
Jirasek, Fabian [1 ]
Bamler, Robert [1 ]
Mandt, Stephan [1 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Donald Bren Hall, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
ACTIVITY-COEFFICIENTS; THERMODYNAMIC PROPERTIES; UNIFAC; MODEL;
D O I
10.1039/d0cc05258b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a generic way to hybridize physical and data-driven methods for predicting physicochemical properties. The approach 'distills' the physical method's predictions into a prior model and combines it with sparse experimental data using Bayesian inference. We apply the new approach to predict activity coefficients at infinite dilution and obtain significant improvements compared to the physical and data-driven baselines and established ensemble methods from the machine learning literature.
引用
收藏
页码:12407 / 12410
页数:4
相关论文
共 50 条
  • [41] Data-driven and knowledge-driven prediction methods for ventilated cavities based on Gaussian process
    Chen, Kuangqi
    Huang, Biao
    Hu, Chenxing
    Long, Hui
    Liu, Taotao
    Hao, Liang
    Zhang, Xuan
    PHYSICS OF FLUIDS, 2025, 37 (03)
  • [42] Data-driven prediction of air bending
    Vorkov, Vitalii
    Garcia, Alberto Tomas
    Rodrigues, Goncalo Costa
    Duflou, Joost R.
    18TH INTERNATIONAL CONFERENCE ON SHEET METAL, SHEMET 2019 - NEW TRENDS AND DEVELOPMENTS IN SHEET METAL PROCESSING, 2019, 29 : 177 - 184
  • [43] Data-Driven Modelling of a Pelleting Process and Prediction of Pellet Physical Properties (vol 66, pg 154, 2022)
    Emerson, Joseph
    Vivacqua, Vincenzino
    Stitt, Hugh
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2022, 66 (03): : 245 - 245
  • [44] Data-Driven Prediction of Cement-Stabilized Soils Tensile Properties
    Castaneda-Lopez, Mario
    Lenoir, Thomas
    Sanfratello, Jean-Pierre
    Thorel, Luc
    INFRASTRUCTURES, 2023, 8 (10)
  • [45] Uncertainty quantification in data-driven modelling with application to soil properties prediction
    He, Geng-Fu
    Yin, Zhen-Yu
    Zhang, Pin
    ACTA GEOTECHNICA, 2025, 20 (02) : 843 - 859
  • [46] Investigating the suitability of data-driven methods for extracting physical parameters in cosmological models
    Kim, K. Y.
    Lee, H. W.
    ASTRONOMY AND COMPUTING, 2023, 45
  • [47] Using Formal Methods to Specify Data-Driven Cyber-Physical Systems
    Conradi Hoffmann, Jose Luis
    Horstmann, Leonardo Passig
    Wagner, Matheus
    Vieira, Felipe
    de Lucena, Mateus Martinez
    Frohlich, Antonio Augusto
    2022 IEEE 31ST INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2022, : 643 - 648
  • [48] On Physical and Data-Driven Modeling of Systems With Friction: Methods and Application to Automotive Throttles
    Ren, Zhenxing
    Kroll, Andreas
    Sofsky, Manfried
    Laubenstein, Friedhelm
    AT-AUTOMATISIERUNGSTECHNIK, 2013, 61 (03) : 155 - 171
  • [49] Prediction of hydro-suction dredging depth using data-driven methods
    Mahdavi-Meymand, Amin
    Zounemat-Kermani, Mohammad
    Qaderi, Kourosh
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2021, 15 (03) : 652 - 664
  • [50] A Comparative Study of Data-Driven Power Grid Cascading Failure Prediction Methods
    Uwamahoro, Nathalie
    Eftekharnejad, Sara
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,