Hybridizing physical and data-driven prediction methods for physicochemical properties

被引:23
|
作者
Jirasek, Fabian [1 ]
Bamler, Robert [1 ]
Mandt, Stephan [1 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Donald Bren Hall, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
ACTIVITY-COEFFICIENTS; THERMODYNAMIC PROPERTIES; UNIFAC; MODEL;
D O I
10.1039/d0cc05258b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a generic way to hybridize physical and data-driven methods for predicting physicochemical properties. The approach 'distills' the physical method's predictions into a prior model and combines it with sparse experimental data using Bayesian inference. We apply the new approach to predict activity coefficients at infinite dilution and obtain significant improvements compared to the physical and data-driven baselines and established ensemble methods from the machine learning literature.
引用
收藏
页码:12407 / 12410
页数:4
相关论文
共 50 条
  • [21] Data-driven and hybrid coastal morphological prediction methods for mesoscale forecasting
    Reeve, Dominic E.
    Karunarathna, Harshinie
    Pan, Shunqi
    Horrillo-Caraballo, Jose M.
    Rozynski, Grzegorz
    Ranasinghe, Roshanka
    GEOMORPHOLOGY, 2016, 256 : 49 - 67
  • [22] A Data-Driven Parameter Prediction Method for HSS-Type Methods
    Jiang, Kai
    Su, Jianghao
    Zhang, Juan
    MATHEMATICS, 2022, 10 (20)
  • [23] Alarm Prediction in Cellular Base Stations Using Data-Driven Methods
    Boldt, Martin
    Ickin, Selim
    Borg, Anton
    Kulyk, Valentin
    Gustafsson, Jorgen
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (02): : 1925 - 1933
  • [24] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (14)
  • [25] Data-Driven Social Security Event Prediction: Principles, Methods, and Trends
    Xu, Nuo
    Sun, Zhuo
    APPLIED SCIENCES-BASEL, 2025, 15 (02):
  • [26] Identification of physical processes via combined data-driven and data-assimilation methods
    Chang, Haibin
    Zhang, Dongxiao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 393 : 337 - 350
  • [27] The sensitivity to metocean data on using data-driven methods for a Valemax vessel speed prediction
    Wang, Jun
    Zhang, Wenjing
    Wang, Yiyang
    OCEAN ENGINEERING, 2022, 252
  • [28] Pipe break prediction based on evolutionary data-driven methods with brief recorded data
    Xu, Qiang
    Chen, Qiuwen
    Li, Weifeng
    Ma, Jinfeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2011, 96 (08) : 942 - 948
  • [29] The sensitivity to metocean data on using data-driven methods for a Valemax vessel speed prediction
    Wang, Jun
    Zhang, Wenjing
    Wang, Yiyang
    Ocean Engineering, 2022, 252
  • [30] DATA-DRIVEN DISCOVERY OF PHYSICAL LAWS
    LANGLEY, P
    COGNITIVE SCIENCE, 1981, 5 (01) : 31 - 54