Hybridizing physical and data-driven prediction methods for physicochemical properties

被引:23
|
作者
Jirasek, Fabian [1 ]
Bamler, Robert [1 ]
Mandt, Stephan [1 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Donald Bren Hall, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
ACTIVITY-COEFFICIENTS; THERMODYNAMIC PROPERTIES; UNIFAC; MODEL;
D O I
10.1039/d0cc05258b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a generic way to hybridize physical and data-driven methods for predicting physicochemical properties. The approach 'distills' the physical method's predictions into a prior model and combines it with sparse experimental data using Bayesian inference. We apply the new approach to predict activity coefficients at infinite dilution and obtain significant improvements compared to the physical and data-driven baselines and established ensemble methods from the machine learning literature.
引用
收藏
页码:12407 / 12410
页数:4
相关论文
共 50 条
  • [31] Hybrid approach for energy consumption prediction: Coupling data-driven and physical approaches
    Amasyali, Kadir
    El-Gohary, Nora
    ENERGY AND BUILDINGS, 2022, 259
  • [32] Physical and Data-driven Hybrid Model for Outdoor Lifetime Prediction of PV Modules
    Kaaya, Ismail
    Weiss, Karl-Anders
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 460 - 464
  • [33] Data-driven physical law learning model for chaotic robot dynamics prediction
    Qian, Kui
    Tian, Lei
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11160 - 11171
  • [34] Data-driven optimal prediction with control
    Katrutsa, Aleksandr
    Oseledets, Ivan
    Utyuzhnikov, Sergey
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 143
  • [35] Prediction rigidities for data-driven chemistry
    Chong, Sanggyu
    Bigi, Filippo
    Grasselli, Federico
    Loche, Philip
    Kellner, Matthias
    Ceriotti, Michele
    FARADAY DISCUSSIONS, 2025, 256 (00) : 322 - 344
  • [36] Data-Driven Model for Rockburst Prediction
    Zhao, Hongbo
    Chen, Bingrui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [37] Data-driven physical law learning model for chaotic robot dynamics prediction
    Kui Qian
    Lei Tian
    Applied Intelligence, 2022, 52 : 11160 - 11171
  • [38] Data-driven nonparametric prediction intervals
    Frey, Jesse
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (06) : 1039 - 1048
  • [39] A Data-Driven Approach for Event Prediction
    Yuen, Jenny
    Torralba, Antonio
    COMPUTER VISION-ECCV 2010, PT II, 2010, 6312 : 707 - 720
  • [40] Data-driven modeling for scoliosis prediction
    Deng, Liming
    Li, Han-Xiong
    Hu, Yong
    Cheung, Jason P. Y.
    Jin, Richu
    Luk, Keith D. K.
    Cheung, Prudence W. H.
    2016 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2016,