A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR RANDOM PARABOLIC PDEs

被引:28
|
作者
Luo, Yan [1 ]
Wang, Zhu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, West Hitech Zone, Chengdu 611731, Sichuan, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2019年 / 41卷 / 01期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
ensemble-based time stepping; multilevel Monte Carlo; random parabolic PDEs; PARTIAL-DIFFERENTIAL-EQUATIONS; ORTHOGONAL DECOMPOSITION METHOD; STOCHASTIC COLLOCATION METHOD; ELLIPTIC PDES; ALGORITHM;
D O I
10.1137/18M1174635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A first-order, Monte Carlo ensemble method has been recently introduced for solving parabolic equations with random coefficients in [Luo and Wang, SIAM T. Nurner. Anal., 56 (2018), pp. 859-876], which is a natural synthesis of the ensemble-based, Monte Carlo sampling algorithm and the ensemble-based, first-order time stepping scheme. With the introduction of an ensemble average of the diffusion function, this algorithm leads to a single discrete system with multiple right-hand sides for a group of realizations, which could be solved more efficiently than a sequence of linear systems. In this paper, we pursue in the same direction and develop a new multilevel Monte Carlo ensemble method for solving random parabolic partial differential equations. Comparing with the approach in [Luo and Wang, SIAM T. Numer. Anal., 56 (2018), pp. 859-876], this method possesses a second-order accuracy in time and further reduces the computational cost by using the multilevel Monte Carlo sampling method. Rigorous numerical analysis shows the method achieves the optimal rate of convergence. Several numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:A622 / A642
页数:21
相关论文
共 50 条
  • [41] Multilevel Monte Carlo front-tracking for random scalar conservation laws
    Risebro, Nils Henrik
    Schwab, Christoph
    Weber, Franziska
    BIT NUMERICAL MATHEMATICS, 2016, 56 (01) : 263 - 292
  • [42] Multilevel Monte Carlo front-tracking for random scalar conservation laws
    Nils Henrik Risebro
    Christoph Schwab
    Franziska Weber
    BIT Numerical Mathematics, 2016, 56 : 263 - 292
  • [43] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [44] Multilevel tensor approximation of PDEs with random data
    Jonas Ballani
    Daniel Kressner
    Michael D. Peters
    Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 400 - 427
  • [45] Multilevel tensor approximation of PDEs with random data
    Ballani, Jonas
    Kressner, Daniel
    Peters, Michael D.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (03): : 400 - 427
  • [46] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    I. G. Graham
    F. Y. Kuo
    J. A. Nichols
    R. Scheichl
    Ch. Schwab
    I. H. Sloan
    Numerische Mathematik, 2015, 131 : 329 - 368
  • [47] A Monte Carlo MIMO Detection Scheme Via Random Noise Generation
    Hung, Cheng-Yu
    Chung, Wei-Ho
    Chang, Ronald Y.
    Chen, Chiao-En
    2012 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2012,
  • [48] The role of Monte Carlo within a diagonalization/Monte Carlo scheme
    Lee, D
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 809 - 812
  • [49] MULTILEVEL MONTE CARLO FOR BASKET OPTIONS
    Giles, Michael B.
    PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4, 2009, : 1263 - 1270
  • [50] Multilevel Monte Carlo path simulation
    Giles, Michael B.
    OPERATIONS RESEARCH, 2008, 56 (03) : 607 - 617