A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR RANDOM PARABOLIC PDEs

被引:28
|
作者
Luo, Yan [1 ]
Wang, Zhu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, West Hitech Zone, Chengdu 611731, Sichuan, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2019年 / 41卷 / 01期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
ensemble-based time stepping; multilevel Monte Carlo; random parabolic PDEs; PARTIAL-DIFFERENTIAL-EQUATIONS; ORTHOGONAL DECOMPOSITION METHOD; STOCHASTIC COLLOCATION METHOD; ELLIPTIC PDES; ALGORITHM;
D O I
10.1137/18M1174635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A first-order, Monte Carlo ensemble method has been recently introduced for solving parabolic equations with random coefficients in [Luo and Wang, SIAM T. Nurner. Anal., 56 (2018), pp. 859-876], which is a natural synthesis of the ensemble-based, Monte Carlo sampling algorithm and the ensemble-based, first-order time stepping scheme. With the introduction of an ensemble average of the diffusion function, this algorithm leads to a single discrete system with multiple right-hand sides for a group of realizations, which could be solved more efficiently than a sequence of linear systems. In this paper, we pursue in the same direction and develop a new multilevel Monte Carlo ensemble method for solving random parabolic partial differential equations. Comparing with the approach in [Luo and Wang, SIAM T. Numer. Anal., 56 (2018), pp. 859-876], this method possesses a second-order accuracy in time and further reduces the computational cost by using the multilevel Monte Carlo sampling method. Rigorous numerical analysis shows the method achieves the optimal rate of convergence. Several numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:A622 / A642
页数:21
相关论文
共 50 条
  • [21] Multilevel Monte Carlo method for parabolic stochastic partial differential equations
    Barth, Andrea
    Lang, Annika
    Schwab, Christoph
    BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 3 - 27
  • [22] Improved multilevel Monte Carlo convergence using the Milstein scheme
    Giles, Mike
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 343 - 358
  • [23] EMBEDDED MULTILEVEL MONTE CARLO FOR UNCERTAINTY QUANTIFICATION IN RANDOM DOMAINS
    Badia, Santiago
    Hampton, Jerrad
    Principe, Javier
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (01) : 119 - 142
  • [24] Multilevel Monte Carlo estimators for elliptic PDEs with Levy-type diffusion coefficient
    Merkle, Robin
    Barth, Andrea
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1279 - 1317
  • [25] Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications
    Graham, I. G.
    Kuo, F. Y.
    Nuyens, D.
    Scheichl, R.
    Sloan, I. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3668 - 3694
  • [26] Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient
    Robin Merkle
    Andrea Barth
    BIT Numerical Mathematics, 2022, 62 : 1279 - 1317
  • [27] MULTILEVEL QUASI-MONTE CARLO INTEGRATION WITH PRODUCT WEIGHTS FOR ELLIPTIC PDES WITH LOGNORMAL COEFFICIENTS
    Herrmann, Lukas
    Schwab, Christoph
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1507 - 1552
  • [28] Multilevel Monte Carlo Simulation of the Eddy Current Problem With Random Parameters
    Galetzka, Armin
    Bontinck, Zeger
    Romer, Ulrich
    Schops, Sebastian
    2017 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - ITALY (ACES), 2017,
  • [29] A Multilevel Monte Carlo Algorithm for Parabolic Advection-Diffusion Problems with Discontinuous Coefficients
    Stein, Andreas
    Barth, Andrea
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2018, 2020, 324 : 445 - 466
  • [30] MULTILEVEL MONTE CARLO METAMODELING
    Rosenbaum, Imry
    Staum, Jeremy
    2013 WINTER SIMULATION CONFERENCE (WSC), 2013, : 509 - 520