A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR RANDOM PARABOLIC PDEs

被引:28
|
作者
Luo, Yan [1 ]
Wang, Zhu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, West Hitech Zone, Chengdu 611731, Sichuan, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2019年 / 41卷 / 01期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
ensemble-based time stepping; multilevel Monte Carlo; random parabolic PDEs; PARTIAL-DIFFERENTIAL-EQUATIONS; ORTHOGONAL DECOMPOSITION METHOD; STOCHASTIC COLLOCATION METHOD; ELLIPTIC PDES; ALGORITHM;
D O I
10.1137/18M1174635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A first-order, Monte Carlo ensemble method has been recently introduced for solving parabolic equations with random coefficients in [Luo and Wang, SIAM T. Nurner. Anal., 56 (2018), pp. 859-876], which is a natural synthesis of the ensemble-based, Monte Carlo sampling algorithm and the ensemble-based, first-order time stepping scheme. With the introduction of an ensemble average of the diffusion function, this algorithm leads to a single discrete system with multiple right-hand sides for a group of realizations, which could be solved more efficiently than a sequence of linear systems. In this paper, we pursue in the same direction and develop a new multilevel Monte Carlo ensemble method for solving random parabolic partial differential equations. Comparing with the approach in [Luo and Wang, SIAM T. Numer. Anal., 56 (2018), pp. 859-876], this method possesses a second-order accuracy in time and further reduces the computational cost by using the multilevel Monte Carlo sampling method. Rigorous numerical analysis shows the method achieves the optimal rate of convergence. Several numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:A622 / A642
页数:21
相关论文
共 50 条
  • [31] Multilevel Monte Carlo methods
    Heinrich, S
    LARGE-SCALE SCIENTIFIC COMPUTING, 2001, 2179 : 58 - 67
  • [32] Multilevel Monte Carlo Metamodeling
    Rosenbaum, Imry
    Staum, Jeremy
    OPERATIONS RESEARCH, 2017, 65 (04) : 1062 - 1077
  • [33] Multilevel Monte Carlo methods
    Giles, Michael B.
    ACTA NUMERICA, 2015, 24 : 259 - 328
  • [34] Variance reduced Monte Carlo methods for PDEs
    Newton, N.J.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 3):
  • [35] Extended ensemble Monte Carlo
    Iba, Y
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (05): : 623 - 656
  • [36] Gibbs ensemble Monte Carlo
    Silva Fernandes, Fernando M. S.
    Fartaria, Rui P. S.
    AMERICAN JOURNAL OF PHYSICS, 2015, 83 (09) : 809 - 816
  • [37] Analysis of Nested Multilevel Monte Carlo Using Approximate Normal Random Variables
    Giles, Michael
    Sheridan-Methven, Oliver
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 200 - 226
  • [38] MULTILEVEL MONTE CARLO EM SCHEME FOR MV-SDES WITH SMALL NOISE
    Botija-munoz, Ulises
    Yuan, Chenggui
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,
  • [39] MULTILEVEL MONTE CARLO EM SCHEME FOR MV-SDES WITH SMALL NOISE
    不详
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024, 14 (04): : 748 - 777
  • [40] Multilevel Monte Carlo applied to a structural engineering model with random material parameters
    Blondeel, P.
    Robbe, P.
    Van Hoorickx, C.
    Lombaert, G.
    Vandewalle, S.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2018) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2018), 2018, : 5027 - 5041