Terahertz Funneling-Induced Quantum Tunneling at Angstrom Scale

被引:0
|
作者
Kim, Dai-Sik [1 ,2 ]
Bahk, Young-Mi [1 ,2 ]
Kim, Joon-Yeon [1 ,2 ]
Kang, Bong Joo [3 ,4 ]
Kim, Yong Seung [5 ,6 ]
Park, Joohyun [7 ]
Kim, Won Tae [3 ,4 ]
Kim, Tae Yun [8 ,9 ]
Kang, Taehee [1 ,2 ]
Rhie, Jiyeah [1 ,2 ]
Han, Sanghoon [1 ,2 ]
Jeon, Hyeongtag [7 ,10 ]
Park, Cheol-Hwan [8 ,9 ]
Rotermund, Fabian [3 ,4 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[2] Seoul Natl Univ, Ctr Atom Scale Electromagnetism, Seoul 08826, South Korea
[3] Ajou Univ, Dept Phys, Suwon 16499, South Korea
[4] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea
[5] Sejong Univ, Graphene Res Inst, Seoul 05006, South Korea
[6] Sejong Univ, Dept Phys, Seoul 05006, South Korea
[7] Hanyang Univ, Dept Nanoscale Semicond Engn, Seoul 04763, South Korea
[8] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[9] Seoul Natl Univ, Ctr Theoret Phys, Seoul 08826, South Korea
[10] Hanyang Univ, Div Mat Sci & Engn, Seoul 04763, South Korea
关键词
FIELD ENHANCEMENT; PLASMONICS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate electron tunneling-induced colossal nonlinear response of vertically oriented angstrom-metallic gaps by irradiation with intense terahertz pulses. We also investigate the sub-picosecond time evolution of the induced tunneling current extracted from the transmission measurement of light passing through the metallic gap. Our technology of angstrom gap lithography enlarges the boundary of quantum plasmonics down to terahertz frequencies, enabling both linear and nonlinear angstrom optics in a broad spectrum domain. Also, our method has a huge potential of merging the knowledge of conventional dc electronic transport measurements and the study of ultrafast dynamics and nonlinear terahertz spectroscopy.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Quantum tunneling and spin dynamics in nanometer scale magnetic systems
    Awschalom, D.D.
    Smyth, J.F.
    Grinstein, G.
    DiVincenzo, D.P.
    Journal of Applied Physics, 1993, 73 (10 pt 2A)
  • [42] Tunneling quantum dot sensors for multi-band infrared and terahertz radiation detection
    Ariyawansa, G.
    Matsik, S. G.
    Perera, A. G. U.
    Su, X. H.
    Bhattacharya, P.
    2007 IEEE SENSORS, VOLS 1-3, 2007, : 503 - 506
  • [43] Highly superlinear terahertz photoconductance in GaAs quantum point contacts in the deep tunneling regime
    Otteneder, M.
    Hild, M.
    Kvon, Z. D.
    Rodyakina, E. E.
    Glazov, M. M.
    Ganichev, S. D.
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [44] GEOMETRY INDUCED QUANTUM STATES IN SCANNING TUNNELING MICROSCOPY
    GARCIAGARCIA, R
    GARCIA, N
    SURFACE SCIENCE, 1991, 251 : 408 - 412
  • [45] Photon Induced Tunneling Oscillations in a Double Quantum Well
    G. J. Papadopoulos
    P. Melas
    Foundations of Physics, 2001, 31 : 165 - 175
  • [46] Tunneling-induced dephasing in InP quantum dots
    Masumoto, Y
    Suto, F
    Ikezawa, M
    Uchiyama, C
    Aihara, M
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 26 (1-4): : 413 - 416
  • [47] Tunneling-induced renormalization in interacting quantum dots
    Splettstoesser, Janine
    Governale, Michele
    Koenig, Juergen
    PHYSICAL REVIEW B, 2012, 86 (03)
  • [48] Electric field induced tunneling process in the quantum wells
    Panda, S
    Panda, BK
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE-PART A, 2003, 77A (02): : 147 - 151
  • [49] Photon induced tunneling oscillations in a double quantum well
    Papadopoulos, GJ
    Melas, P
    FOUNDATIONS OF PHYSICS, 2001, 31 (01) : 165 - 175
  • [50] Time scale of forerunners in quantum tunneling -: art. no. 042119
    García-Calderón, G
    Villavicencio, J
    Delgado, F
    Muga, JG
    PHYSICAL REVIEW A, 2002, 66 (04): : 6