Terahertz Funneling-Induced Quantum Tunneling at Angstrom Scale

被引:0
|
作者
Kim, Dai-Sik [1 ,2 ]
Bahk, Young-Mi [1 ,2 ]
Kim, Joon-Yeon [1 ,2 ]
Kang, Bong Joo [3 ,4 ]
Kim, Yong Seung [5 ,6 ]
Park, Joohyun [7 ]
Kim, Won Tae [3 ,4 ]
Kim, Tae Yun [8 ,9 ]
Kang, Taehee [1 ,2 ]
Rhie, Jiyeah [1 ,2 ]
Han, Sanghoon [1 ,2 ]
Jeon, Hyeongtag [7 ,10 ]
Park, Cheol-Hwan [8 ,9 ]
Rotermund, Fabian [3 ,4 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[2] Seoul Natl Univ, Ctr Atom Scale Electromagnetism, Seoul 08826, South Korea
[3] Ajou Univ, Dept Phys, Suwon 16499, South Korea
[4] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea
[5] Sejong Univ, Graphene Res Inst, Seoul 05006, South Korea
[6] Sejong Univ, Dept Phys, Seoul 05006, South Korea
[7] Hanyang Univ, Dept Nanoscale Semicond Engn, Seoul 04763, South Korea
[8] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[9] Seoul Natl Univ, Ctr Theoret Phys, Seoul 08826, South Korea
[10] Hanyang Univ, Div Mat Sci & Engn, Seoul 04763, South Korea
关键词
FIELD ENHANCEMENT; PLASMONICS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate electron tunneling-induced colossal nonlinear response of vertically oriented angstrom-metallic gaps by irradiation with intense terahertz pulses. We also investigate the sub-picosecond time evolution of the induced tunneling current extracted from the transmission measurement of light passing through the metallic gap. Our technology of angstrom gap lithography enlarges the boundary of quantum plasmonics down to terahertz frequencies, enabling both linear and nonlinear angstrom optics in a broad spectrum domain. Also, our method has a huge potential of merging the knowledge of conventional dc electronic transport measurements and the study of ultrafast dynamics and nonlinear terahertz spectroscopy.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Many-body interaction in resonant tunneling of terahertz quantum cascade lasers
    Wang, F.
    Guo, X. G.
    Cao, J. C.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (08)
  • [32] Nonresonant tunneling phonon depopulated GaN based terahertz quantum cascade structures
    Freeman, Will
    Karunasiri, Gamani
    APPLIED PHYSICS LETTERS, 2013, 102 (15)
  • [33] Nonlinear quantum mode of terahertz electromagnetic wave amplification in resonant tunneling heterostructures
    O. A. Klimenko
    Yu. A. Mityagin
    V. N. Murzin
    S. A. Savinov
    V. S. Syzranov
    Bulletin of the Lebedev Physics Institute, 2011, 38 : 339 - 344
  • [34] Combined resonant tunneling and rate equation modeling of terahertz quantum cascade lasers
    Chen, Zhichao
    Liu, Andong
    Chang, Dong
    Dhillon, Sukhdeep
    Razeghi, Manijeh
    Wang, Feihu
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (11)
  • [35] Decoherence of Quantum Tunneling Induced by Spontaneous Emission
    Li Zheng
    Zhi-Hong Xiao
    Yu-Jie Liu
    Ying Shi
    International Journal of Theoretical Physics, 2015, 54 : 2185 - 2191
  • [36] Decoherence of Quantum Tunneling Induced by Spontaneous Emission
    Zheng, Li
    Xiao, Zhi-Hong
    Liu, Yu-Jie
    Shi, Ying
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (07) : 2185 - 2191
  • [37] Quantum terahertz electrodynamics and macroscopic quantum tunneling in layered superconductors (vol 98, art no 077002, 2007)
    Savel'ev, Sergey
    Rakhmanov, A. L.
    Nori, Franco
    PHYSICAL REVIEW LETTERS, 2007, 98 (26)
  • [38] Probing many-body quantum states in single InAs quantum dots: Terahertz and tunneling spectroscopy
    Zhang, Y.
    Shibata, K.
    Nagai, N.
    Ndebeka-Bandou, C.
    Bastard, G.
    Hirakawa, K.
    PHYSICAL REVIEW B, 2015, 91 (24):
  • [39] TUNNELING TRANSDUCERS - QUANTUM LIMITED DISPLACEMENT MONITORS AT THE NANOMETER SCALE
    BOCKO, MF
    STEPHENSON, KA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (02): : 1363 - 1366