Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

被引:12
|
作者
You, Jiangfeng [1 ]
Xin, Ling [1 ]
Yu, Xiao [1 ]
Zhou, Xiang [1 ]
Liu, Yong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
LITHIUM STORAGE; ELECTROCHEMICAL PERFORMANCE; INTERCALATION; MORPHOLOGY; NANOSHEETS; BAMOO4; OXIDE;
D O I
10.1007/s00339-018-1689-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge-discharge cycles at a current density of 200 mA/g, showing good cycling performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Synthesis of SiOx/C composite with dual interface as Li-ion battery anode material
    Liu, Yanxia
    Ruan, Jingjing
    Liu, Fan
    Fan, Yameng
    Wang, Pu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 802 : 704 - 711
  • [42] Low temperature solvothermal synthesis of nanosized NiSb as a Li-ion battery anode material
    Xie, J.
    Zhao, X. B.
    Yu, H. M.
    Qi, H.
    Cao, G. S.
    Tu, J. P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 441 (1-2) : 231 - 235
  • [43] Synthesis of PAN/SnCl2 composite as Li-ion battery anode material
    He, Xiangming
    Ren, Jianguo
    Wang, Li
    Pu, Weihua
    Jiang, Changyin
    Wan, Chunrong
    IONICS, 2006, 12 (4-5) : 323 - 326
  • [44] Cobalt oxide thin films for high capacity and stable Li-ion battery anode
    Anto P. Varghese
    Shantikumar Nair
    Dhamodaran Santhanagopalan
    Journal of Solid State Electrochemistry, 2019, 23 : 513 - 518
  • [45] Nickel ferrite as a stable, high capacity and high rate anode for Li-ion battery applications
    Kumar, P. Ramesh
    Mitra, Sagar
    RSC ADVANCES, 2013, 3 (47) : 25058 - 25064
  • [46] Deep Cycling for High-Capacity Li-Ion Batteries
    Xia, Huarong
    Tang, Yuxin
    Malyi, Oleksandr I.
    Zhu, Zhiqiang
    Zhang, Yanyan
    Zhang, Wei
    Ge, Xiang
    Zeng, Yi
    Chen, Xiaodong
    ADVANCED MATERIALS, 2021, 33 (10)
  • [47] Cobalt oxide thin films for high capacity and stable Li-ion battery anode
    Varghese, Anto P.
    Nair, Shantikumar
    Santhanagopalan, Dhamodaran
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (02) : 513 - 518
  • [48] Nanoribbons of SnO2 as a high performance Li-ion battery anode material
    Faramarzi, Mojtaba Sadati
    Abnavi, Amin
    Ghasemi, Shahnaz
    Sanaee, Zeinab
    MATERIALS RESEARCH EXPRESS, 2018, 5 (06):
  • [49] FeMnO3: a high-performance Li-ion battery anode material
    Cao, Kangzhe
    Liu, Huiqiao
    Xu, Xiaohong
    Wang, Yijing
    Jiao, Lifang
    CHEMICAL COMMUNICATIONS, 2016, 52 (76) : 11414 - 11417
  • [50] High entropy oxides as anode material for Li-ion battery applications: A practical approach
    Wang, Qingsong
    Sarkar, Abhishek
    Li, Zhenyou
    Lu, Yang
    Velasco, Leonardo
    Bhattacharya, Subramshu S.
    Brezesinski, Torsten
    Hahn, Horst
    Breitung, Ben
    ELECTROCHEMISTRY COMMUNICATIONS, 2019, 100 : 121 - 125