Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

被引:12
|
作者
You, Jiangfeng [1 ]
Xin, Ling [1 ]
Yu, Xiao [1 ]
Zhou, Xiang [1 ]
Liu, Yong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
LITHIUM STORAGE; ELECTROCHEMICAL PERFORMANCE; INTERCALATION; MORPHOLOGY; NANOSHEETS; BAMOO4; OXIDE;
D O I
10.1007/s00339-018-1689-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge-discharge cycles at a current density of 200 mA/g, showing good cycling performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Exploring an Interesting Si Source from Photovoltaic Industry Waste and Engineering It as a Li-Ion Battery High-Capacity Anode
    Huang, Tzu-Yang
    Selvaraj, Baskar
    Lin, Hung-Yu
    Sheu, Hwo-Shuenn
    Song, Yen-Fang
    Wang, Chun-Chieh
    Hwang, Bing Joe
    Wut, Nae-Lih
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (10): : 5769 - 5775
  • [32] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
    胡军平
    王章寅
    张根瑞
    刘宇
    刘宁
    李未
    李健文
    欧阳楚英
    杨声远
    ChinesePhysicsB, 2021, 30 (04) : 466 - 472
  • [33] Revisit of Polyaniline as a High-Capacity Organic Cathode Material for Li-Ion Batteries
    Zhao, Ruirui
    Chang, Zu
    Fu, Xudong
    Xu, Mingli
    Ai, Xinping
    Qian, Jiangfeng
    POLYMERS, 2024, 16 (10)
  • [34] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries*
    Hu, Junping
    Wang, Zhangyin
    Zhang, Genrui
    Liu, Yu
    Liu, Ning
    Li, Wei
    Li, Jianwen
    Ouyang, Chuying
    Yang, Shengyuan A.
    CHINESE PHYSICS B, 2021, 30 (04)
  • [35] Performances of homemade graphite as anode material for Li-ion battery
    Kan, Su-Rong
    Wu, Guo-Liang
    Lu, Shi-Gang
    Liu, Ren-Min
    Dianyuan Jishu/Chinese Journal of Power Sources, 2002, 26 (02):
  • [36] Synthesis of phase-pure Li2MnSiO4@C porous nanoboxes for high-capacity Li-ion battery cathodes
    Yang, Xian-Feng
    Yang, Jin-Hua
    Zaghib, Karim
    Trudeau, Michel L.
    Ying, Jackie Y.
    NANO ENERGY, 2015, 12 : 305 - 313
  • [37] CaSnO3 :: a high capacity anode material for Li-ion batteries
    Sharma, N
    Shaju, KM
    Rao, GVS
    Chowdari, BVR
    SOLID STATE IONICS: TRENDS IN THE NEW MILLENNIUM, PROCEEDINGS, 2002, : 87 - 95
  • [38] Investigations of solid electrolyte interphase formation on high-capacity Li-ion battery anodes
    Trahey, Lynn
    Yang, Zhenzhen
    Thackeray, Michael M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [39] Synthesis of PAN/SnCl2 composite as Li-ion battery anode material
    Xiangming He
    Jianguo Ren
    Li Wang
    Weihua Pu
    Changyin Jiang
    Chunrong Wan
    Ionics, 2006, 12 : 323 - 326
  • [40] Low temperature solvothermal synthesis of nanosized NiSb as a Li-ion battery anode material
    Xie, J.
    Zhao, X.B.
    Yu, H.M.
    Qi, H.
    Cao, G.S.
    Tu, J.P.
    Journal of Alloys and Compounds, 2007, 441 (1-2): : 231 - 235