Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

被引:12
|
作者
You, Jiangfeng [1 ]
Xin, Ling [1 ]
Yu, Xiao [1 ]
Zhou, Xiang [1 ]
Liu, Yong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
LITHIUM STORAGE; ELECTROCHEMICAL PERFORMANCE; INTERCALATION; MORPHOLOGY; NANOSHEETS; BAMOO4; OXIDE;
D O I
10.1007/s00339-018-1689-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge-discharge cycles at a current density of 200 mA/g, showing good cycling performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode
    Wang, Wei
    Song, Xinjie
    Gu, Cuiping
    Liu, Dongxu
    Liu, Jinyun
    Huang, Jiarui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 741 : 223 - 230
  • [12] High-Capacity Cathode Material with High Voltage for Li-Ion Batteries
    Shi, Ji-Lei
    Xiao, Dong-Dong
    Ge, Mingyuan
    Yu, Xiqian
    Chu, Yong
    Huang, Xiaojing
    Zhang, Xu-Dong
    Yin, Ya-Xia
    Yang, Xiao-Qing
    Guo, Yu-Guo
    Gu, Lin
    Wan, Li-Jun
    ADVANCED MATERIALS, 2018, 30 (09)
  • [13] High-Temperature Treatment to Improve the Capacity of LiBC Anode Material in Li-ion Battery
    Yang, Qianwen
    Chen, Langlang
    Feng, Xiang
    Li, De
    Chen, Yong
    FRONTIERS IN ENERGY RESEARCH, 2020, 8
  • [14] Nanotube Li2MoO4: a novel and high-capacity material as a lithium-ion battery anode
    Liu, Xudong
    Lyu, Yingchun
    Zhang, Zhihua
    Li, Hong
    Hu, Yong-sheng
    Wang, ZhaoXiang
    Zhao, Yanming
    Kuang, Quan
    Dong, Youzhong
    Liang, Zhiyong
    Fan, Qinghua
    Chen, Liquan
    NANOSCALE, 2014, 6 (22) : 13660 - 13667
  • [15] Binder-free CaMoO 4 nanostructured anode electrodes for Li-ion battery applications
    Leng, Xiaolong
    Nunna, Guru Prakash
    Guddeti, Phaneendra Reddy
    Alotaibi, Nouf H.
    Pitcheri, Rosaiah
    Ko, Tae Jo
    CERAMICS INTERNATIONAL, 2024, 50 (17) : 31491 - 31503
  • [16] High capacity carbon anode for Li-ion battery - A theoretical explanation
    Tokumitsu, K
    Fujimoto, H
    Mabuchi, A
    Kasuh, T
    CARBON, 1999, 37 (10) : 1599 - 1605
  • [17] Ag decorated porous Si structure as potential high-capacity anode material for Li-ion cells
    Raic, Matea
    Mikac, Lara
    Gotic, Marijan
    Skrabic, Marko
    Baran, Nikola
    Ivanda, Mile
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 922
  • [18] Cattail-Grass-Derived Porous Carbon as High-Capacity Anode Material for Li-Ion Batteries
    Li, Hui
    Song, Lingyue
    Huo, Dongxing
    Yang, Yu
    Zhang, Ning
    Liang, Jinglong
    MOLECULES, 2023, 28 (11):
  • [19] Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material
    Cherian, Christie Thomas
    Sundaramurthy, Jayaraman
    Reddy, M. V.
    Kumar, Palanisamy Suresh
    Mani, Kalaivani
    Pliszka, Damian
    Sow, Chorng Haur
    Ramakrishna, Seeram
    Chowdari, B. V. R.
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (20) : 9957 - 9963
  • [20] Anode material of CoMnSb for rechargeable Li-ion battery
    Matsuno, Shinsuke
    Nakayama, Masanobu
    Wakihara, Masataka
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) : A61 - A65