Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods

被引:121
|
作者
Makowski, D [1 ]
Wallach, D
Tremblay, M
机构
[1] INRA, Unite Agron, F-78850 Thiverval Grignon, France
[2] INRA, Unite Agron, F-31326 Castanet Tolosan, France
来源
AGRONOMIE | 2002年 / 22卷 / 02期
关键词
Bayes; Markov chain Monte Carlo; parameter estimation; parameter uncertainty;
D O I
10.1051/agro:2002007
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The Bayesian approach allows one to estimate model parameters from prior expert knowledge about parameter values and from experimental data. The purpose of this paper is to compare the performances of two Bayesian methods, namely the Metropolis-Hastings algorithm and the Generalized Likelihood Uncertainty Estimation method (GLUE). These two methods are applied to a non-linear model that includes 22 parameters. This model has the main features of an agronomic model. The two Bayesian methods give similar results. The parameter estimates obtained with the two methods have similar properties. Both methods improve strongly the accuracy of model predictions even when only few data samples are available for estimating the parameters. However, the values of mean squared error of prediction of the model are slightly higher with the GLUE method than with the Metropolis-Hastings algorithm. The performances of the methods are sensitive to the prior assumptions made about parameter values.
引用
收藏
页码:191 / 203
页数:13
相关论文
共 50 条
  • [41] Bayesian Prior Choice in IRT Estimation Using MCMC and Variational Bayes
    Natesan, Prathiba
    Nandakumar, Ratna
    Minka, Tom
    Rubright, Jonathan D.
    FRONTIERS IN PSYCHOLOGY, 2016, 7
  • [42] A bayesian approach to map QTLs using reversible jump MCMC
    da Silva, Joseane Padilha
    Leandro, Roseli Aparecida
    CIENCIA E AGROTECNOLOGIA, 2009, 33 (04): : 1061 - 1070
  • [43] Modeling attainment of steady state of drug concentration in plasma by means of a Bayesian approach using MCMC methods
    Jordan, Paul
    Brunschwig, Hadassa
    Luedin, Eric
    PHARMACEUTICAL STATISTICS, 2008, 7 (01) : 36 - 41
  • [44] Bayesian methods for parameter estimation in effective field theories
    Schindler, M. R.
    Phillips, D. R.
    ANNALS OF PHYSICS, 2009, 324 (03) : 682 - 708
  • [45] Bayesian estimation of abrupt changes contaminated by multiplicative noise using MCMC
    Tourneret, JY
    Doisy, M
    Mazzei, M
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2133 - 2136
  • [46] Classification of chirp signals using hierarchical Bayesian learning and MCMC methods
    Davy, M
    Doncarli, C
    Tourneret, JY
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 377 - 388
  • [47] SHAPE PARAMETER ESTIMATION FOR K-DISTRIBUTION USING VARIATIONAL BAYESIAN APPROACH
    Turlapaty, Anish C.
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 243 - 247
  • [48] Bayesian Estimation of Neyman-Scott Rectangular Pulse Model Parameters in Comparison with Other Parameter Estimation Methods
    Nizeyimana, Pacifique
    Lee, Kyeong Eun
    Kim, Gwangseob
    WATER, 2024, 16 (17)
  • [49] Bayesian estimation of chirplet signals by MCMC sampling
    Lin, CC
    Djuric, PM
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 3129 - 3132
  • [50] Teaching Bayesian Parameter Estimation, Bayesian Model Comparison and Null Hypothesis Significance Testing Using Spreadsheets
    Fisher, Christopher R.
    Wolfe, Christopher R.
    SPREADSHEETS IN EDUCATION, 2012, 5 (03):