Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods

被引:121
|
作者
Makowski, D [1 ]
Wallach, D
Tremblay, M
机构
[1] INRA, Unite Agron, F-78850 Thiverval Grignon, France
[2] INRA, Unite Agron, F-31326 Castanet Tolosan, France
来源
AGRONOMIE | 2002年 / 22卷 / 02期
关键词
Bayes; Markov chain Monte Carlo; parameter estimation; parameter uncertainty;
D O I
10.1051/agro:2002007
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The Bayesian approach allows one to estimate model parameters from prior expert knowledge about parameter values and from experimental data. The purpose of this paper is to compare the performances of two Bayesian methods, namely the Metropolis-Hastings algorithm and the Generalized Likelihood Uncertainty Estimation method (GLUE). These two methods are applied to a non-linear model that includes 22 parameters. This model has the main features of an agronomic model. The two Bayesian methods give similar results. The parameter estimates obtained with the two methods have similar properties. Both methods improve strongly the accuracy of model predictions even when only few data samples are available for estimating the parameters. However, the values of mean squared error of prediction of the model are slightly higher with the GLUE method than with the Metropolis-Hastings algorithm. The performances of the methods are sensitive to the prior assumptions made about parameter values.
引用
收藏
页码:191 / 203
页数:13
相关论文
共 50 条
  • [21] Bayesian automatic parameter estimation of Threshold Autoregressive (TAR) models using Markov Chain Monte Carlo (MCMC)
    Amiri, E
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 189 - 194
  • [22] A Bayesian Approach to Parameter Estimation in Simplex Regression Model: A Comparison with Beta Regression
    Omar Lopez, Freddy
    REVISTA COLOMBIANA DE ESTADISTICA, 2013, 36 (01): : 1 - 21
  • [23] Portfolio selection using hierarchical Bayesian analysis and MCMC methods
    Greyserman, A
    Jones, DH
    Strawderman, WE
    JOURNAL OF BANKING & FINANCE, 2006, 30 (02) : 669 - 678
  • [24] Bayesian MCMC estimation of the rose of directions
    Prokesová, M
    KYBERNETIKA, 2003, 39 (06) : 703 - 717
  • [25] An MCMC based Bayesian inference approach to parameter estimation of distributed lag models for forecasting used product returns for remanufacturing
    Geda M.
    Kwong C.K.
    Journal of Remanufacturing, 2021, 11 (3) : 175 - 194
  • [26] Parameter Estimation of General Regression Neural Network Using Bayesian Approach
    Choir, Achmad Syahrul
    Prasetyo, Rindang Bangun
    Ulama, Brodjol Sutijo Suprih
    Iriawan, Nur
    Fitriasari, Kartika
    Dokhi, Mohammad
    PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [27] A Bayesian approach for parameter estimation and prediction using a computationally intensive model
    Higdon, Dave
    McDonnell, Jordan D.
    Schunck, Nicolas
    Sarich, Jason
    Wild, Stefan M.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2015, 42 (03)
  • [28] Comparison of sampling techniques for Bayesian parameter estimation
    Allison, Rupert
    Dunkley, Joanna
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (04) : 3918 - 3928
  • [29] MCMC Bayesian Estimation in FIEGARCH Models
    Prass, Taiane S.
    Lopes, Silvia R. C.
    Achcar, Jorge A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (09) : 3238 - 3258
  • [30] Bayesian approach for parameter estimation of continuous-time stochastic volatility models using Fourier transform methods
    Merkle, Milan
    Saporito, Yuri F.
    Targino, Rodrigo S.
    STATISTICS & PROBABILITY LETTERS, 2020, 156