Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods

被引:121
|
作者
Makowski, D [1 ]
Wallach, D
Tremblay, M
机构
[1] INRA, Unite Agron, F-78850 Thiverval Grignon, France
[2] INRA, Unite Agron, F-31326 Castanet Tolosan, France
来源
AGRONOMIE | 2002年 / 22卷 / 02期
关键词
Bayes; Markov chain Monte Carlo; parameter estimation; parameter uncertainty;
D O I
10.1051/agro:2002007
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The Bayesian approach allows one to estimate model parameters from prior expert knowledge about parameter values and from experimental data. The purpose of this paper is to compare the performances of two Bayesian methods, namely the Metropolis-Hastings algorithm and the Generalized Likelihood Uncertainty Estimation method (GLUE). These two methods are applied to a non-linear model that includes 22 parameters. This model has the main features of an agronomic model. The two Bayesian methods give similar results. The parameter estimates obtained with the two methods have similar properties. Both methods improve strongly the accuracy of model predictions even when only few data samples are available for estimating the parameters. However, the values of mean squared error of prediction of the model are slightly higher with the GLUE method than with the Metropolis-Hastings algorithm. The performances of the methods are sensitive to the prior assumptions made about parameter values.
引用
收藏
页码:191 / 203
页数:13
相关论文
共 50 条
  • [31] A machine learning approach to Bayesian parameter estimation
    Nolan, Samuel
    Smerzi, Augusto
    Pezze, Luca
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [32] Porous Material Parameter Estimation: A Bayesian Approach
    Fackler, Cameron
    Dieckman, Eric
    Xiang, Ning
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2012, 1443 : 314 - 321
  • [33] Parameter estimation in batch polymerisation (a Bayesian approach)
    Lu, Z
    Martin, E
    Morris, J
    ADVANCES IN PROCESS CONTROL 6, 2001, : 165 - 172
  • [34] A Bayesian Approach for Parameter Estimation in Railway Systems
    Jaoua, Nouha
    Vanheeghe, Philippe
    Navarro, Nicolas
    Langlois, Olivier
    Iordache, Marius
    2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2018,
  • [35] A machine learning approach to Bayesian parameter estimation
    Samuel Nolan
    Augusto Smerzi
    Luca Pezzè
    npj Quantum Information, 7
  • [36] Comparison of cardiovascular parameter estimation methods using swine data
    Arai, Tatsuya
    Lee, Kichang
    Cohen, Richard J.
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2020, 34 (02) : 261 - 270
  • [37] Comparison of cardiovascular parameter estimation methods using swine data
    Tatsuya Arai
    Kichang Lee
    Richard J. Cohen
    Journal of Clinical Monitoring and Computing, 2020, 34 : 261 - 270
  • [38] Parameter estimation of thermal response test: A Bayesian inference using Markov chain Monte Carlo-Metropolis Hastings (MCMC-MH) approach
    Bathina, Siva K.
    Siddapureddy, Sudheer
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 193
  • [39] Electrocardiogram Signal Modeling With Adaptive Parameter Estimation Using Sequential Bayesian Methods
    Edla, Shwetha
    Kovvali, Narayan
    Papandreou-Suppappola, Antonia
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (10) : 2667 - 2680
  • [40] MRF parameter estimation by MCMC method
    Wang, L
    Liu, J
    Li, SZ
    PATTERN RECOGNITION, 2000, 33 (11) : 1919 - 1925