Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods

被引:121
|
作者
Makowski, D [1 ]
Wallach, D
Tremblay, M
机构
[1] INRA, Unite Agron, F-78850 Thiverval Grignon, France
[2] INRA, Unite Agron, F-31326 Castanet Tolosan, France
来源
AGRONOMIE | 2002年 / 22卷 / 02期
关键词
Bayes; Markov chain Monte Carlo; parameter estimation; parameter uncertainty;
D O I
10.1051/agro:2002007
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The Bayesian approach allows one to estimate model parameters from prior expert knowledge about parameter values and from experimental data. The purpose of this paper is to compare the performances of two Bayesian methods, namely the Metropolis-Hastings algorithm and the Generalized Likelihood Uncertainty Estimation method (GLUE). These two methods are applied to a non-linear model that includes 22 parameters. This model has the main features of an agronomic model. The two Bayesian methods give similar results. The parameter estimates obtained with the two methods have similar properties. Both methods improve strongly the accuracy of model predictions even when only few data samples are available for estimating the parameters. However, the values of mean squared error of prediction of the model are slightly higher with the GLUE method than with the Metropolis-Hastings algorithm. The performances of the methods are sensitive to the prior assumptions made about parameter values.
引用
收藏
页码:191 / 203
页数:13
相关论文
共 50 条
  • [1] Bayesian estimation of the parameters of a polynomial phase signal using MCMC methods
    Theys, C
    Vieira, M
    Ferrari, A
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3553 - 3556
  • [2] Parameter estimation for gene regulatory networks: a two-stage MCMC Bayesian approach
    Xue, Niannan
    Pan, Wei
    Guo, Yike
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 1476 - 1479
  • [3] Bayesian Texture and Instrument Parameter Estimation From Blurred and Noisy Images Using MCMC
    Vacar, Cornelia
    Giovannelli, Jean-Francois
    Berthoumieu, Yannick
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (06) : 707 - 711
  • [4] Bayesian estimation of the variance of a jitter using MCMC
    Andrieu, C
    Doucet, A
    Duvaut, P
    8TH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1996, : 24 - 27
  • [5] A Bayesian estimation of building shape using MCMC
    Dick, AR
    Torr, PHS
    Cipolla, R
    COMPUTER VISION - ECCV 2002, PT II, 2002, 2351 : 852 - 866
  • [6] Bayesian function learning using MCMC methods
    Magni, P
    Bellazzi, R
    De Nicolao, G
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (12) : 1319 - 1331
  • [7] Bayesian Network Reconstruction Using Systems Genetics Data: Comparison of MCMC Methods
    Tasaki, Shinya
    Ben Sauerwine
    Hoff, Bruce
    Toyoshiba, Hiroyoshi
    Gaiteri, Chris
    Chaibub Neto, Elias
    GENETICS, 2015, 199 (04) : 973 - U128
  • [8] Using Bayesian methods for the parameter estimation of deformation monitoring networks
    Tanir, E.
    Felsenstein, K.
    Yalcinkaya, M.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2008, 8 (02) : 335 - 347
  • [9] Bayesian Estimation of Marshall Olkin Extended Inverse Weibull Distribution Using MCMC Approach
    Okasha, Hassan M.
    El-Baz, A. H.
    Basheer, Abdulkareem M.
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2020, 21 (01) : 247 - 257
  • [10] SIMULTANEOUS 3D OBJECT TRACKING AND CAMERA PARAMETER ESTIMATION BY BAYESIAN METHODS AND TRANSDIMENSIONAL MCMC SAMPLING
    Mohedano, Raul
    Garcia, Narciso
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,