Numerical Simulation of a Non-linear Singular Perturbed Schrodinger Equation Using Finite Element Approximation

被引:4
|
作者
Kumar, Manoj [1 ]
Srivastava, Akanksha [1 ]
Mishra, Garima [1 ]
机构
[1] Motilal Nehru Natl Inst Technol, Dept Math, Allahabad 211004, Uttar Pradesh, India
来源
关键词
Singular perturbations; Non-linear boundary value problem; Asymptotic analysis; Finite element method; Newton's method; Schrodinger's equation; LEAST-ENERGY SOLUTIONS; SPIKE-LAYER SOLUTIONS; BOUND-STATES; EXISTENCE; PROFILE;
D O I
10.1007/s40009-013-0125-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is concerned with the various finite element solutions of non-linear singularly perturbed Schrodinger boundary value problems. Non-linear Schrodinger equation does not appear to have been previously studied in detail computationally and it is hope that this paper will help to provide a new idea in this direction. To linearize the nonlinear system of equations, we introduced a concept of new modified fifth order Newton type iterative method and discussed the behavior of the solution. In order to confirm our theoretical results, numerically and to demonstrate the performance of the proposed algorithm, we have considered two examples of non-linear Schrodinger's equation involving non-linearity in homogenous and non-homogenous form.
引用
收藏
页码:239 / 252
页数:14
相关论文
共 50 条