Numerical studies of the cubic non-linear Schrodinger equation

被引:16
|
作者
El-Danaf, Talaat S. [1 ]
Ramadan, Mohamed A. [1 ]
Abd Alaal, Faisal E. I. [1 ]
机构
[1] Menoufia Univ, Fac Sci, Dept Math, Shibin Al Kawm, Egypt
关键词
Non-polynomial spline; Non-linear Schrodinger equation; Von Neumann stability; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1007/s11071-011-0014-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we are concerned with the problem of applying cubic non-polynomial spline functions to develop a numerical method for obtaining approximation for the solution for cubic non-linear Schrodinger equation. The truncation error of the method is theoretically analyzed. Using the Von Neumann method, the proposed method is shown to be unconditionally stable. The linearization technique is carried out to solve the system and to prove that the method is unconditionally stable. Two numerical examples are included to illustrate the practical implementation of the proposed method.
引用
收藏
页码:619 / 627
页数:9
相关论文
共 50 条
  • [1] Numerical studies of the cubic non-linear Schrodinger equation
    Talaat S. El-Danaf
    Mohamed A. Ramadan
    Faisal E. I. Abd Alaal
    Nonlinear Dynamics, 2012, 67 : 619 - 627
  • [2] The dissipative property of a cubic non-linear Schrodinger equation
    Naumkin, P. I.
    IZVESTIYA MATHEMATICS, 2015, 79 (02) : 346 - 374
  • [3] TALBOT EFFECT FOR THE CUBIC NON-LINEAR SCHRODINGER EQUATION ON THE TORUS
    Erdogan, M. B.
    Tzirakis, N.
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (06) : 1081 - 1090
  • [4] Analytical and numerical aspects of the linear and non-linear Schrodinger equation
    Negulescu, Claudia
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2019, 10 (02): : 351 - 446
  • [5] INVARIANTS OF THE NON-LINEAR SCHRODINGER EQUATION
    JOHNSON, SF
    LONNGREN, KE
    NICHOLSON, DR
    PHYSICS LETTERS A, 1979, 74 (06) : 393 - 394
  • [6] NON-LINEAR SCHRODINGER-EQUATION, POTENTIAL NON-LINEAR SCHRODINGER-EQUATION AND SOLITON-SOLUTIONS
    BOITI, M
    LADDOMADA, C
    PEMPINELLI, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1982, 68 (03): : 236 - 248
  • [7] NON-LINEAR SCHRODINGER EQUATION WITH NON LOCAL INTERACTION
    GINIBRE, J
    VELO, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (14): : 683 - 685
  • [8] The non-linear Schrodinger equation with a periodic δ-interaction
    Pava, Jaime Angulo
    Ponce, Gustavo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03): : 497 - 551
  • [9] On the variational principle for the non-linear Schrodinger equation
    Mihalka, Zsuzsanna E.
    Margocsy, Adam
    Szabados, Agnes
    Surjan, Peter R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (01) : 340 - 351
  • [10] The energy graph of the non-linear Schrodinger equation
    Procesi, M.
    Procesi, C.
    Nguyen, B. Van
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (02) : 229 - 301