Numerical Simulation of a Non-linear Singular Perturbed Schrodinger Equation Using Finite Element Approximation

被引:4
|
作者
Kumar, Manoj [1 ]
Srivastava, Akanksha [1 ]
Mishra, Garima [1 ]
机构
[1] Motilal Nehru Natl Inst Technol, Dept Math, Allahabad 211004, Uttar Pradesh, India
来源
关键词
Singular perturbations; Non-linear boundary value problem; Asymptotic analysis; Finite element method; Newton's method; Schrodinger's equation; LEAST-ENERGY SOLUTIONS; SPIKE-LAYER SOLUTIONS; BOUND-STATES; EXISTENCE; PROFILE;
D O I
10.1007/s40009-013-0125-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is concerned with the various finite element solutions of non-linear singularly perturbed Schrodinger boundary value problems. Non-linear Schrodinger equation does not appear to have been previously studied in detail computationally and it is hope that this paper will help to provide a new idea in this direction. To linearize the nonlinear system of equations, we introduced a concept of new modified fifth order Newton type iterative method and discussed the behavior of the solution. In order to confirm our theoretical results, numerically and to demonstrate the performance of the proposed algorithm, we have considered two examples of non-linear Schrodinger's equation involving non-linearity in homogenous and non-homogenous form.
引用
收藏
页码:239 / 252
页数:14
相关论文
共 50 条
  • [21] PRODUCT APPROXIMATION FOR NON-LINEAR PROBLEMS IN THE FINITE-ELEMENT METHOD
    CHRISTIE, I
    GRIFFITHS, DF
    MITCHELL, AR
    SANZSERNA, JM
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1981, 1 (03) : 253 - 266
  • [22] NON-LINEAR SCHRODINGER EQUATION WITH NON LOCAL INTERACTION
    GINIBRE, J
    VELO, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (14): : 683 - 685
  • [23] The non-linear Schrodinger equation with a periodic δ-interaction
    Pava, Jaime Angulo
    Ponce, Gustavo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03): : 497 - 551
  • [24] On the variational principle for the non-linear Schrodinger equation
    Mihalka, Zsuzsanna E.
    Margocsy, Adam
    Szabados, Agnes
    Surjan, Peter R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (01) : 340 - 351
  • [25] The energy graph of the non-linear Schrodinger equation
    Procesi, M.
    Procesi, C.
    Nguyen, B. Van
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (02) : 229 - 301
  • [26] Instability for the semiclassical non-linear Schrodinger equation
    Burq, N
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) : 45 - 58
  • [27] APPROXIMATION METHODS FOR THE SOLUTION OF THE NON-LINEAR SCHRODINGER EQUATION WITH SELF-CONSISTENT POTENTIAL
    GAJEWSKI, H
    ZACHARIAS, K
    MATHEMATISCHE NACHRICHTEN, 1979, 89 : 71 - 85
  • [28] A NONCONFORMING QUADRILATERAL FINITE ELEMENT APPROXIMATION TO NONLINEAR SCHRODINGER EQUATION
    Shi, Dongyang
    Liao, Xin
    Wang, Lele
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (03) : 584 - 592
  • [29] A FINITE-ELEMENT SOLUTION OF THE NON-LINEAR HEAT-EQUATION
    ZLAMAL, M
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1980, 14 (02): : 203 - 216
  • [30] Multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations using finite element simulation
    Singh, Akhilesh Kumar
    Kumar, Manoj
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2015, 50 : 56 - 68