Numerical Simulation of a Non-linear Singular Perturbed Schrödinger Equation Using Finite Element Approximation

被引:0
|
作者
Manoj Kumar
Akanksha Srivastava
Garima Mishra
机构
[1] Motilal Nehru National Institute of Technology,Department of Mathematics
来源
关键词
Singular perturbations; Non-linear boundary value problem; Asymptotic analysis; Finite element method; Newton’s method; Schrödinger’s equation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the various finite element solutions of non-linear singularly perturbed Schrödinger boundary value problems. Non-linear Schrödinger equation does not appear to have been previously studied in detail computationally and it is hope that this paper will help to provide a new idea in this direction. To linearize the nonlinear system of equations, we introduced a concept of new modified fifth order Newton type iterative method and discussed the behavior of the solution. In order to confirm our theoretical results, numerically and to demonstrate the performance of the proposed algorithm, we have considered two examples of non-linear Schrödinger’s equation involving non-linearity in homogenous and non-homogenous form.
引用
收藏
页码:239 / 252
页数:13
相关论文
共 50 条
  • [1] Numerical Simulation of a Non-linear Singular Perturbed Schrodinger Equation Using Finite Element Approximation
    Kumar, Manoj
    Srivastava, Akanksha
    Mishra, Garima
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2013, 36 (03): : 239 - 252
  • [2] Instability for the Semiclassical Non-linear Schrödinger Equation
    Nicolas Burq
    Maciej Zworski
    Communications in Mathematical Physics, 2005, 260 : 45 - 58
  • [3] The non-linear Schrödinger equation with a periodic δ-interaction
    Jaime Angulo Pava
    Gustavo Ponce
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 497 - 551
  • [4] On the variational principle for the non-linear Schrödinger equation
    Zsuzsanna É. Mihálka
    Ádám Margócsy
    Ágnes Szabados
    Péter R. Surján
    Journal of Mathematical Chemistry, 2020, 58 : 340 - 351
  • [5] A NONCONFORMING QUADRILATERAL FINITE ELEMENT APPROXIMATION TO NONLINEAR SCHRDINGER EQUATION
    石东洋
    廖歆
    王乐乐
    Acta Mathematica Scientia, 2017, 37 (03) : 584 - 592
  • [6] A NONCONFORMING QUADRILATERAL FINITE ELEMENT APPROXIMATION TO NONLINEAR SCHRDINGER EQUATION
    石东洋
    廖歆
    王乐乐
    Acta Mathematica Scientia(English Series), 2017, 37 (03) : 584 - 592
  • [7] Numerical simulation of singularly perturbed non-linear elliptic boundary value problems using finite element method
    Kumar, Manoj
    Srivastava, Akanksha
    Singh, Akhilesh Kumar
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (01) : 226 - 236
  • [8] Formation and propagation of solitons using the generalized non-linear Schrödinger equation
    Sazzad Muhammad Samaun Imran
    Journal of Materials Science: Materials in Electronics, 2006, 17 : 297 - 300
  • [9] Destruction of the Beating Effect¶for a Non-Linear Schrödinger Equation
    Vincenzo Grecchi
    André Martinez
    Andrea Sacchetti
    Communications in Mathematical Physics, 2002, 227 : 191 - 209
  • [10] Painlevé Analysis and Singular Manifold Method for a (2 + 1) Dimensional Non-Linear Schrödinger Equation
    P G Estévez
    G A Hernaez
    Journal of Nonlinear Mathematical Physics, 2001, 8 : 106 - 111