Matrix Integrals and Feynman Diagrams in the Kontsevich Model

被引:0
|
作者
Fiorenza, Domenico [1 ]
Murri, Riccardo [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We review some relations occurring between the combinatorial intersection theory on the moduli spaces of stable curves and the asymptotic behavior of the 't Hooft-Kontsevich matrix integrals. In particular, we give an alternative proof of the Witten-Di Francesco-Itzykson-Zuber theorem -which expresses derivatives of the partition function of intersection numbers as matrix integrals- using techniques based on diagrammatic calculus and combinatorial relations among intersection numbers. These techniques extend to a more general interaction potential.
引用
收藏
页码:525 / 576
页数:52
相关论文
共 50 条
  • [1] Unitary Matrix Integrals in the Framework of the Generalized Kontsevich Model
    Mironov, A.
    Morozov, A.
    Semenoff, G. W.
    International Journal of Modern Physics A, 11 (28):
  • [2] Unitary matrix integrals in the framework of the generalized Kontsevich model
    Mironov, A
    Morozov, A
    Semenoff, GW
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (28): : 5031 - 5080
  • [3] Iterated elliptic and hypergeometric integrals for Feynman diagrams
    Ablinger, J.
    Bluemlein, J.
    De Freitas, A.
    van Hoeij, M.
    Imamoglu, E.
    Raab, C. G.
    Radu, C. -S.
    Schneider, C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [4] Matrix theory and Feynman diagrams
    Plefka, J
    Serone, M
    Waldron, A
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (1-3): : 191 - 194
  • [5] Regularizing Feynman path integrals using the generalized Kontsevich-Vishik trace
    Hartung, Tobias
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
  • [6] Labelled tree graphs, Feynman diagrams and disk integrals
    Xiangrui Gao
    Song He
    Yong Zhang
    Journal of High Energy Physics, 2017
  • [7] A SIMPLE FORMULA FOR REDUCING FEYNMAN DIAGRAMS TO SCALAR INTEGRALS
    DAVYDYCHEV, AI
    PHYSICS LETTERS B, 1991, 263 (01) : 107 - 111
  • [8] Labelled tree graphs, Feynman diagrams and disk integrals
    Gao, Xiangrui
    He, Song
    Zhang, Yong
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [9] Knots, Feynman diagrams and matrix models
    Grothaus, M
    Streit, L
    Volovich, IV
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1999, 2 (03) : 359 - 380
  • [10] Superintegrability of Kontsevich matrix model
    Mironov, Andrei
    Morozov, Alexei
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (03):