Blueprint for a microwave trapped ion quantum computer

被引:190
|
作者
Lekitsch, Bjoern [1 ]
Weidt, Sebastian [1 ]
Fowler, Austin G. [2 ]
Molmer, Klaus [3 ]
Devitt, Simon J. [4 ]
Wunderlich, Christof [5 ]
Hensinger, Winfried K. [1 ]
机构
[1] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England
[2] Google Inc, Santa Barbara, CA 93117 USA
[3] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[4] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama 3150198, Japan
[5] Univ Siegen, Dept Phys, Nat Wissenschaftlich Tech Fak, D-57068 Siegen, Germany
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 02期
基金
英国工程与自然科学研究理事会; 日本学术振兴会;
关键词
GATES;
D O I
10.1126/sciadv.1601540
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer
    Alderete, C. Huerta
    Singh, Shivani
    Nhung H Nguyen
    Zhu, Daiwei
    Balu, Radhakrishnan
    Monroe, Christopher
    Chandrashekar, C. M.
    Linke, Norbert M.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [32] Quantum support vector machines for classification and regression on a trapped-ion quantum computer
    Suzuki, Teppei
    Hasebe, Takashi
    Miyazaki, Tsubasa
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [33] Efficient Qubit Routing for a Globally Connected Trapped Ion Quantum Computer
    Webber, Mark
    Herbert, Steven
    Weidt, Sebastian
    Hensinger, Winfried K.
    ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (08)
  • [34] Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
    Nikodem Grzesiak
    Reinhold Blümel
    Kenneth Wright
    Kristin M. Beck
    Neal C. Pisenti
    Ming Li
    Vandiver Chaplin
    Jason M. Amini
    Shantanu Debnath
    Jwo-Sy Chen
    Yunseong Nam
    Nature Communications, 11
  • [35] How to Wire a 1000-Qubit Trapped-Ion Quantum Computer
    Malinowski, M.
    Allcock, D. T. C.
    Ballance, C. J.
    PRX QUANTUM, 2023, 4 (04):
  • [36] Low-depth amplitude estimation on a trapped-ion quantum computer
    Giurgica-Tiron, Tudor
    Johri, Sonika
    Kerenidis, Iordanis
    Nguyen, Jason
    Pisenti, Neal
    Prakash, Anupam
    Sosnova, Ksenia
    Wright, Ken
    Zeng, William
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [37] Simulation and randomized measurement of topological phase on a trapped-ion quantum computer
    Ahn, Cheong Eung
    Cho, Gil Young
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2022, 81 (03) : 258 - 266
  • [38] Simulation and randomized measurement of topological phase on a trapped-ion quantum computer
    Cheong Eung Ahn
    Gil Young Cho
    Journal of the Korean Physical Society, 2022, 81 : 258 - 266
  • [39] Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
    Grzesiak, Nikodem
    Blumel, Reinhold
    Wright, Kenneth
    Beck, Kristin M.
    Pisenti, Neal C.
    Li, Ming
    Chaplin, Vandiver
    Amini, Jason M.
    Debnath, Shantanu
    Chen, Jwo-Sy
    Nam, Yunseong
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [40] Trapped Ion Quantum Networks
    Monroe, C.
    Duan, L. -M.
    Matsukevich, D.
    Maunz, P.
    Moehring, D. L.
    Ohnschenk, S.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3507 - 3507