Efficient Qubit Routing for a Globally Connected Trapped Ion Quantum Computer

被引:11
|
作者
Webber, Mark [1 ]
Herbert, Steven [3 ]
Weidt, Sebastian [1 ,2 ]
Hensinger, Winfried K. [1 ,2 ]
机构
[1] Univ Sussex, Sussex Ctr Quantum Technol, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England
[2] Universal Quantum Ltd, Brighton BN1 6SB, E Sussex, England
[3] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
基金
英国工程与自然科学研究理事会;
关键词
ion trapping; noisy intermediate-scale quantum; quantum computing; quantum information processing; quantum volume;
D O I
10.1002/qute.202000027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The cost of enabling connectivity in noisy intermediate-scale quantum (NISQ) devices is an important factor in determining computational power. A qubit routing algorithm is created, which enables efficient global connectivity in a previously proposed trapped ion quantum computing architecture. The routing algorithm is characterized by comparison against both a strict lower bound, and a positional swap based routing algorithm. An error model is proposed, which can be used to estimate the achievable circuit depth and quantum volume of the device as a function of experimental parameters. A new metric based on quantum volume, but with native two-qubit gates, is used to assess the cost of connectivity relative to the upper bound of free, all to all connectivity. The metric is also used to assess a square-grid superconducting device. These two architectures are compared and it is found that for the shuttling parameters used, the trapped ion design has a substantially lower cost associated with connectivity.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Efficient Stabilized Two-Qubit Gates on a Trapped-Ion Quantum Computer
    Blumel, Reinhold
    Grzesiak, Nikodem
    Nguyen, Nhung H.
    Green, Alaina M.
    Li, Ming
    Maksymov, Andrii
    Linke, Norbert M.
    Nam, Yunseong
    PHYSICAL REVIEW LETTERS, 2021, 126 (22)
  • [2] How to Wire a 1000-Qubit Trapped-Ion Quantum Computer
    Malinowski, M.
    Allcock, D. T. C.
    Ballance, C. J.
    PRX QUANTUM, 2023, 4 (04):
  • [3] A Shuttle-Efficient Qubit Mapper for Trapped-Ion Quantum Computers
    Upadhyay, Suryansh
    Saki, Abdullah Ash
    Topaloglu, Rasit Onur
    Ghosh, Swaroop
    PROCEEDINGS OF THE 32ND GREAT LAKES SYMPOSIUM ON VLSI 2022, GLSVLSI 2022, 2022, : 305 - 308
  • [4] QUANTUM OPTICS Trapped ion to flying qubit
    Maxein, Dominik
    Laurat, Julien
    NATURE PHOTONICS, 2013, 7 (03) : 169 - 171
  • [5] Quantum synchronization of a single trapped-ion qubit
    Zhang, Liyun
    Wang, Zhao
    Wang, Yucheng
    Zhang, Junhua
    Wu, Zhigang
    Jie, Jianwen
    Lu, Yao
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [6] Hardware-efficient variational quantum algorithm in a trapped-ion quantum computer
    Zhuang, J. -z.
    Wu, Y. -k.
    Duan, L. -m.
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [7] Efficient quantum programming using EASE gates on a trapped-ion quantum computer
    Grzesiak, Nikodem
    Maksymov, Andrii
    Niroula, Pradeep
    Nam, Yunseong
    QUANTUM, 2022, 6
  • [8] Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
    Nikodem Grzesiak
    Reinhold Blümel
    Kenneth Wright
    Kristin M. Beck
    Neal C. Pisenti
    Ming Li
    Vandiver Chaplin
    Jason M. Amini
    Shantanu Debnath
    Jwo-Sy Chen
    Yunseong Nam
    Nature Communications, 11
  • [9] Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
    Grzesiak, Nikodem
    Blumel, Reinhold
    Wright, Kenneth
    Beck, Kristin M.
    Pisenti, Neal C.
    Li, Ming
    Chaplin, Vandiver
    Amini, Jason M.
    Debnath, Shantanu
    Chen, Jwo-Sy
    Nam, Yunseong
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] Crosstalk Suppression in Individually Addressed Two-Qubit Gates in a Trapped-Ion Quantum Computer
    Fang, Chao
    Wang, Ye
    Huang, Shilin
    Brown, Kenneth R.
    Kim, Jungsang
    PHYSICAL REVIEW LETTERS, 2022, 129 (24)