Blueprint for a microwave trapped ion quantum computer

被引:190
|
作者
Lekitsch, Bjoern [1 ]
Weidt, Sebastian [1 ]
Fowler, Austin G. [2 ]
Molmer, Klaus [3 ]
Devitt, Simon J. [4 ]
Wunderlich, Christof [5 ]
Hensinger, Winfried K. [1 ]
机构
[1] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England
[2] Google Inc, Santa Barbara, CA 93117 USA
[3] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[4] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama 3150198, Japan
[5] Univ Siegen, Dept Phys, Nat Wissenschaftlich Tech Fak, D-57068 Siegen, Germany
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 02期
基金
英国工程与自然科学研究理事会; 日本学术振兴会;
关键词
GATES;
D O I
10.1126/sciadv.1601540
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.
引用
收藏
页数:11
相关论文
共 50 条
  • [42] Versatile microwave-driven trapped ion spin system for quantum information processing
    Piltz, Christian
    Sriarunothai, Theeraphot
    Ivanov, Svetoslav S.
    Woelk, Sabine
    Wunderlich, Christof
    SCIENCE ADVANCES, 2016, 2 (07):
  • [43] Robust and fast microwave-driven quantum logic for trapped-ion qubits
    Weber, M. A.
    Gely, M. F.
    Hanley, R. K.
    Harty, T. P.
    Leu, A. D.
    Loschnauer, C. M.
    Nadlinger, D. P.
    Lucas, D. M.
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [44] Robust and fast microwave-driven quantum logic for trapped-ion qubits
    Weber, M.A.
    Gely, M.F.
    Hanley, R.K.
    Harty, T.P.
    Leu, A.D.
    Löschnauer, C.M.
    Nadlinger, D.P.
    Lucas, D.M.
    Physical Review A, 110 (01):
  • [45] A simplified Mølmer-Sørensen gate for the trapped ion quantum computer
    Azuma, Hiroo
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [46] Observation of a non-Hermitian supersonic mode on a trapped-ion quantum computer
    Zhang, Yuxuan
    Carrasquilla, Juan
    Kim, Yong Baek
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [47] Efficient Stabilized Two-Qubit Gates on a Trapped-Ion Quantum Computer
    Blumel, Reinhold
    Grzesiak, Nikodem
    Nguyen, Nhung H.
    Green, Alaina M.
    Li, Ming
    Maksymov, Andrii
    Linke, Norbert M.
    Nam, Yunseong
    PHYSICAL REVIEW LETTERS, 2021, 126 (22)
  • [48] Multi-round QAOA and advanced mixers on a trapped-ion quantum computer
    Zhu, Yingyue
    Zhang, Zewen
    Sundar, Bhuvanesh
    Green, Alaina M.
    Alderete, C. Huerta
    Nguyen, Nhung H.
    Hazzard, Kaden R. A.
    Linke, Norbert M.
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (01)
  • [49] Cryogenic Investigation of a 13 GHz Power Amplifier for Trapped-Ion Quantum Computer
    Toth, Peter
    Meyer, Alexander
    Ishikuro, Hiroki
    Issakov, Vadim
    2024 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, COMMUNICATIONS, ANTENNAS, BIOMEDICAL ENGINEERING AND ELECTRONIC SYSTEMS, COMCAS 2024, 2024,
  • [50] Topological order from measurements and feed-forward on a trapped ion quantum computer
    Iqbal, Mohsin
    Tantivasadakarn, Nathanan
    Gatterman, Thomas M.
    Gerber, Justin A.
    Gilmore, Kevin
    Gresh, Dan
    Hankin, Aaron
    Hewitt, Nathan
    Horst, Chandler V.
    Matheny, Mitchell
    Mengle, Tanner
    Neyenhuis, Brian
    Vishwanath, Ashvin
    Foss-Feig, Michael
    Verresen, Ruben
    Dreyer, Henrik
    COMMUNICATIONS PHYSICS, 2024, 7 (01):