Experimental and modeling phase equilibria of gas hydrate systems for post-combustion CO2 capture

被引:16
|
作者
Li, Luling [1 ,2 ]
Fan, Shuanshi [1 ,3 ]
Chen, Qiuxiong [2 ]
Yang, Guang [2 ]
Zhao, Jinzhou [1 ]
Wei, Na [1 ]
Wen, Yonggang [2 ]
机构
[1] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, 8 Xindu Ave, Chengdu 610500, Sichuan, Peoples R China
[2] China Shenzhen Gas Corp Ltd, Shenzhen 518040, Peoples R China
[3] South China Univ Technol, Sch Chem & Chem Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; capture; Gas hydrate; CPA-EoS; Thermodynamic mode; Experimental data; Chen-Guo; CARBON-DIOXIDE SEPARATION; VAPOR-LIQUID-EQUILIBRIA; EQUATION-OF-STATE; HYDROGEN-SULFIDE; WATER-CONTENT; SOLUBILITY; PREDICTION; MIXTURES; DISSOCIATION; SIMULATION;
D O I
10.1016/j.jtice.2018.11.007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Accurate knowledge of hydrate phase equilibria is of fundament in terms of the hydrate-based gas separation process (HBGS) for post-combustion CO2 capture. In this work, we experimentally investigated the phase equilibria of flue gas during hydrate-based CO2 capture. Additionally, new experimental data for dissociation pressure of flue gases with different CO2 concentration were reported. Subsequently, a more accurate thermodynamic model combining Cubic-Plus-Association Equation of State (CPA-EoS) and Chen-Guo model was employed to predict the dissociation pressure of flue gases. To better perform the hydrate equilibria, a temperature dependent binary interaction parameter k(ij) and new parameters for Chen-Guo model were developed. The results showed that the general tender of the new experimental data was in line with previous results. In addition, an improved accuracy was noticed for the mixtures with an Average Absolution Deviation (MD) approximately to 4.07%, through comparing the predicted results with the experimental data. Especially, in terms of the gases with a CO2 concentration less than 85.32%, the improvement was significant. Lastly, this work also utilized the thermodynamic model and the Clausius-Clapeyron equation to predict the dissociation enthalpies of CO2 hydrate. The results showed that the prediction results were located in the margin of experimental data, which demonstrated the thermodynamic model proposed in our work was capable of describing the gas hydrate behavior with high accuracy. (C) 2018 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [41] Capacity and kinetics of solvents for post-combustion CO2 capture
    Bruder, Peter
    Svendsen, Hallvard F.
    6TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2012, 23 : 45 - 54
  • [42] Development of adsorbent technologies for post-combustion CO2 capture
    Drage, T. C.
    Smith, K. M.
    Pevida, C.
    Arenillas, A.
    Snape, C. E.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 881 - 884
  • [43] Sensor placement for post-combustion CO2 capture plants
    Liu, Siyu
    Yin, Xunyuan
    Liu, Jinfeng
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3454 - 3459
  • [44] Exergoeconomic Analysis of Post-Combustion CO2 Capture Processes
    Schach, M. -O.
    Schneider, R.
    Schramm, H.
    Repke, J. -U.
    20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 997 - 1002
  • [45] Insight into the experimental and modeling study of process intensification for post-combustion CO2 capture by rotating packed bed
    Zarei, Fariba
    Rahimi, Mahmood Reza
    Razavi, Razieh
    Baghban, Alireza
    JOURNAL OF CLEANER PRODUCTION, 2019, 211 : 953 - 961
  • [46] Novel scrubbing system for post-combustion CO2 capture and recovery: Experimental studies
    Mulukutla, Tripura
    Obuskovic, Gordana
    Sirkar, Kamalesh K.
    JOURNAL OF MEMBRANE SCIENCE, 2014, 471 : 16 - 26
  • [47] Solid sorbents for CO2 capture from post-combustion and pre-combustion gas streams
    Siriwardane, Ranjani V.
    Robinson, Clark
    Stevens, Robert W., Jr.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [48] Modeling the reactivity of amines towards CO2 and its impact on post-combustion CO2 capture performance
    Kitchin, John R.
    Lee, Anita
    Alesi, Rich
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [49] Modeling of CO2 Solubility in Aqueous Potassium Lysinate Solutions at Post-Combustion CO2 Capture Conditions
    Bian, Y.
    Shen, S.
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN ENVIRONMENT RESEARCH, 2017, 2017, 68
  • [50] Hybrid Hydrate-Membrane Post-combustion CO2 Capture: A Conceptual Process Design and Analyses
    Feyzi, Vafa
    Mohebbi, Vahid
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (29) : 13132 - 13142