Experimental and modeling phase equilibria of gas hydrate systems for post-combustion CO2 capture

被引:16
|
作者
Li, Luling [1 ,2 ]
Fan, Shuanshi [1 ,3 ]
Chen, Qiuxiong [2 ]
Yang, Guang [2 ]
Zhao, Jinzhou [1 ]
Wei, Na [1 ]
Wen, Yonggang [2 ]
机构
[1] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, 8 Xindu Ave, Chengdu 610500, Sichuan, Peoples R China
[2] China Shenzhen Gas Corp Ltd, Shenzhen 518040, Peoples R China
[3] South China Univ Technol, Sch Chem & Chem Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; capture; Gas hydrate; CPA-EoS; Thermodynamic mode; Experimental data; Chen-Guo; CARBON-DIOXIDE SEPARATION; VAPOR-LIQUID-EQUILIBRIA; EQUATION-OF-STATE; HYDROGEN-SULFIDE; WATER-CONTENT; SOLUBILITY; PREDICTION; MIXTURES; DISSOCIATION; SIMULATION;
D O I
10.1016/j.jtice.2018.11.007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Accurate knowledge of hydrate phase equilibria is of fundament in terms of the hydrate-based gas separation process (HBGS) for post-combustion CO2 capture. In this work, we experimentally investigated the phase equilibria of flue gas during hydrate-based CO2 capture. Additionally, new experimental data for dissociation pressure of flue gases with different CO2 concentration were reported. Subsequently, a more accurate thermodynamic model combining Cubic-Plus-Association Equation of State (CPA-EoS) and Chen-Guo model was employed to predict the dissociation pressure of flue gases. To better perform the hydrate equilibria, a temperature dependent binary interaction parameter k(ij) and new parameters for Chen-Guo model were developed. The results showed that the general tender of the new experimental data was in line with previous results. In addition, an improved accuracy was noticed for the mixtures with an Average Absolution Deviation (MD) approximately to 4.07%, through comparing the predicted results with the experimental data. Especially, in terms of the gases with a CO2 concentration less than 85.32%, the improvement was significant. Lastly, this work also utilized the thermodynamic model and the Clausius-Clapeyron equation to predict the dissociation enthalpies of CO2 hydrate. The results showed that the prediction results were located in the margin of experimental data, which demonstrated the thermodynamic model proposed in our work was capable of describing the gas hydrate behavior with high accuracy. (C) 2018 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [31] Cascaded Membrane Processes for Post-Combustion CO2 Capture
    Zhao, Li
    Riensche, Ernst
    Weber, Michael
    Stolten, Detlef
    CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (03) : 489 - 496
  • [32] Benchmarking of a micro gas turbine model integrated with post-combustion CO2 capture
    Ali, Usman
    Font-Palma, Carolina
    Somehsaraei, Homam Nikpey
    Majoumerd, Mohammad Mansouri
    Akram, Muhammad
    Finney, Karen N.
    Best, Thom
    Said, Nassya B. Mohd
    Assadi, Mohsen
    Pourkashanian, Mohamed
    ENERGY, 2017, 126 : 475 - 487
  • [33] Study of novel solvent for CO2 post-combustion capture
    Hadri, Nabil E. L.
    Dang Viet Quang
    Abu-Zahra, Mohammad R. M.
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2268 - 2286
  • [34] New solvent blends for post-combustion CO2 capture
    Knuutila, Hanna K.
    Rennemo, Rune
    Ciftja, Arlinda F.
    GREEN ENERGY & ENVIRONMENT, 2019, 4 (04) : 439 - 452
  • [35] Integration of post-combustion CO2 capture with aluminium production
    Mathisen, Anette
    Ariyarathna, Sanoja
    Eldrup, Nils
    Muller, Gunn-Iren
    Melaaen, Morten
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 6602 - 6610
  • [36] Corrosion in CO2 Post-Combustion Capture with Alkanolamines - A Review
    Kittel, J.
    Gonzalez, S.
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2014, 69 (05): : 915 - 929
  • [37] Assessment of Membrane Performance for Post-Combustion CO2 Capture
    Liu, Liang
    Lee, Jung Hyun
    Han, Sang Hoon
    Ha, Seong Yong
    Chen, George Q.
    Kentish, Sandra E.
    Yeo, Jeong-Gu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (01) : 777 - 785
  • [38] Ionic liquids as an alternative to CO2 post-combustion capture
    Gimeno, M. P.
    Mayoral, M. C.
    Andres, J. M.
    BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2013, (30): : 2 - 5
  • [39] Numerical Evaluation of CO2 Capture on Post-combustion Processes
    Chavez, Rosa-Hilda
    Guadarrama, Javier J.
    PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 271 - 276
  • [40] Dynamic Operation and Simulation of Post-Combustion CO2 Capture
    Gaspar, Jozsef
    Gladis, Arne
    Jorgensen, John Bagterp
    Thomsen, Kaj
    von Solms, Nicolas
    Fosbol, Philip Loldrup
    8TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2016, 86 : 205 - 214